Bài 2. Tìm hai số x và y, biết:
a) x + y = 30; xy = 221 b) x^2 + y^2 =13; xy = 6 và x + y >0
Bài 1: Tìm x biết:
a./ b./ c*./
Bài 2: Tìm x, y, z biết : a/ b/ c/ =
d/ e/ = và x + y = 22 f/ và
Bài 3: Tìm x, y biết:
a) x : 3 = 4 : 5 b) (x+2).(x-3) = 0 c) x2 – 3x = 0 d) e) 9x =81
f) h) và x + y= -21 i) và 3x - 2y = -2
k*) 2x = 3y = 5z và x + 2y – z = 29 l*) và 3x – 2y – z = -29
BÀI TẬP VỀ NHÀ BUỔI 3
Bài 1. Tìm x,y,z biết:
a) và ; b) và
c) và d) và
Bµi 2: Tìm các số a, b, c biết: 2a = 3b; 5b = 7c và 3a + 5c – 7b = 30.
Bµi 3: Tìm x,y,z biết:
a) và 5x + y – 2z = 28; b) ; và 2x + 3y – z = 186;
c) 3x = 2y; 7y = 5z và x – y + z = 32; d) và x + y + z = 49;
e) và 2x + 3y – z = 50;
Bµi 4: Tìm x,y,z biết
a) và xyz = 810; b) và x2 + y2 + z2 = 14.
Bµi 5: Tìm x,y,z biết:
a) ;
b) ; c)
Bài 5: Tìm x, y biết:
a) xy = x - y
b) x(y+2) + y = 1
c) xy - 7y + 5x = 0 và y >= 3
a: =>xy-x+y=0
=>x(y-1)+y-1=-1
=>(y-1)(x+1)=-1
=>(x+1;y-1) thuộc {(1;-1); (-1;1)}
=>(x,y) thuộc {(0;0); (-2;2)}
b: =>x(y+2)+y-1=0
=>x(y+2)+y+2-3=0
=>(y+2)(x+1)=3
=>(x+1;y+2) thuộc {(1;3); (3;1); (-1;-3); (-3;-1)}
=>(x,y) thuộc {(0;1); (2;-1); (-2;-5); (-4;-3)}
c:
y>=3
=>y+5>=8
=>y(x-7)+5x-35=-35
=>(x-7)(y+5)=-35
mà y+5>=8
nên (y+5;x-7) thuộc (35;-1)
=>(y;x) thuộc {(30;6)}
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
Cho tỉ lệ thức \(\frac{x}{7} = \frac{y}{2}\). Tìm hai số x,y biết:
a) x + y = 18; b) x – y = 20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{7} = \frac{y}{2} = \frac{{x + y}}{{7 + 2}} = \frac{{18}}{9} = 2\)
Vậy x = 7 . 2 = 14; y = 2.2 = 4
b) \(\frac{x}{7} = \frac{y}{2} = \frac{{x - y}}{{7 - 2}} = \frac{{20}}{5} = 4\)
Vậy x = 7.4 = 28; y = 2.4 = 8
Tìm các số x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\) và 3x - 2z = 48
b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}\) và 2y - 3z = 77
Cứu với bài khó qué (lm hết cả 2 câu nha mọi ngừi ^^)
a) Áp dụng t/x dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}=\dfrac{3x}{6}=\dfrac{2z}{-10}=\dfrac{3x-2z}{6+10}=\dfrac{48}{16}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.\left(-5\right)=-15\end{matrix}\right.\)
b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y}{-26}=\dfrac{3z}{51}=\dfrac{2y-3z}{-26-51}=\dfrac{77}{-77}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-1\right)=-10\\y=\left(-13\right).\left(-1\right)=13\\z=17.\left(-1\right)=-17\end{matrix}\right.\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\Rightarrow\dfrac{3x}{6}=\dfrac{y}{3}=\dfrac{2z}{-10}\)
Áp dụng t/c của DTSBN, ta có: \(\dfrac{3x-2z}{6-\left(-10\right)}=\dfrac{48}{16}=3\)
\(\dfrac{x}{2}=3\Rightarrow x=6\)
\(\dfrac{y}{3}=3\Rightarrow y=9\)
\(\dfrac{z}{-5}=3\Rightarrow z=-15\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y-3z}{2\cdot\left(-13\right)-3\cdot17}=\dfrac{77}{-77}=-1\)
Do đó: x=-10; y=13; z=-17
Tìm hai số x, y biết:
a) \(\dfrac{x}{y}=\dfrac{-3}{4}\) và 3y - 2x = 36
b) -2x = 5y và 3x - 2y = 38
Cứu em với, em cần gấp (lm cả 2 câu ạ)
\(\dfrac{x}{y}=\dfrac{-3}{4}\)
⇒\(\dfrac{x}{-3}=\dfrac{y}{4}\)
⇒\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)
⇒\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)
Bài tập 2. Tìm hai số x, y biết:
a)
x 5
=
y 2
và 3x−2y = −55;
b)
x 3
=
y 2
và 2x + 5y = 48;
c) −2x = 5y và x + y = 30;
d) 3x = 4y và 2x + 3y = 34.
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
Bài toán 1. So sánh: 200920 và 2009200910
Bài toán 2. Tính tỉ số , biết:
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Bài 11:
Ta có: \(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)
\(\Leftrightarrow n^2\in\left\{0;4;64\right\}\)
hay \(n\in\left\{0;-2;2;8;-8\right\}\)