Bài 8: Tính chất của dãy tỉ số bằng nhau

VT

Tìm các số x, y, z biết:

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\) và 3x - 2z = 48

b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}\) và 2y - 3z = 77

Cứu với bài khó qué (lm hết cả 2 câu nha mọi ngừi ^^)

LL
12 tháng 10 2021 lúc 20:28

a) Áp dụng t/x dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}=\dfrac{3x}{6}=\dfrac{2z}{-10}=\dfrac{3x-2z}{6+10}=\dfrac{48}{16}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.\left(-5\right)=-15\end{matrix}\right.\)

b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y}{-26}=\dfrac{3z}{51}=\dfrac{2y-3z}{-26-51}=\dfrac{77}{-77}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-1\right)=-10\\y=\left(-13\right).\left(-1\right)=13\\z=17.\left(-1\right)=-17\end{matrix}\right.\)

Bình luận (1)
OY
12 tháng 10 2021 lúc 20:28

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\Rightarrow\dfrac{3x}{6}=\dfrac{y}{3}=\dfrac{2z}{-10}\)

Áp dụng t/c của DTSBN, ta có: \(\dfrac{3x-2z}{6-\left(-10\right)}=\dfrac{48}{16}=3\)

\(\dfrac{x}{2}=3\Rightarrow x=6\)

\(\dfrac{y}{3}=3\Rightarrow y=9\)

\(\dfrac{z}{-5}=3\Rightarrow z=-15\)

 

Bình luận (1)
NT
12 tháng 10 2021 lúc 20:54

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y-3z}{2\cdot\left(-13\right)-3\cdot17}=\dfrac{77}{-77}=-1\)

Do đó: x=-10; y=13; z=-17

Bình luận (1)

Các câu hỏi tương tự
VT
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
AH
Xem chi tiết
VT
Xem chi tiết
PT
Xem chi tiết
KY
Xem chi tiết
VT
Xem chi tiết
TH
Xem chi tiết