Cho phương trình bậc hai (ẩn x); x2-5x+m-3=0 (1). a) giải phương trình(1) khi m=7. b) tìm m để phương trình (1) có hai nghiệm phân biệt. c) giả sử phương trình (1) có nghiệm hãy tìm giá trị của m để x1/x2+x2/x1=3/5
Cho bất phương trình: x + 2y + 1 \(\le4x+y+1\)
Bằng cách chuyển vế, hãy đưa bất phương trình trên về dạng tổng quát của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn đó trên mặt phẳng tọa độ
a)Hãy định nghĩa phương trình bậc nhất một ẩn?Phương trình : 2x – 5 = 3 + 2x có phải là phương trình bậc nhất một ẩn không ?
b)Tìm các giá trị của m sao cho phương trình :12 – 2(1- x)2 = 4(x – m) – (x – 3 )(2x +5) có nghiệm x = 3.
c)Định nghĩa hai phương trình tương đương ? Cho ví dụ. Giải thích.
a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn
Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn
c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm
Các bất phương trình nào sau đây là bất phương trình bậc hai một ẩn? Nếu là bất phương trình bậc hai một ẩn, \(x = 2\) có là nghiệm của bất phương trình đó hay không?
a) \({x^2} + x - 6 \le 0\)
b) \(x + 2 > 0\)
c) \( - 6{x^2} - 7x + 5 > 0\)
a) \({x^2} + x - 6 \le 0\) là một bất phương trình bậc hai một ẩn
Vì \({2^2} + 2 - 6 = 0\) nên \(x = 2\) là nghiệm của bất phương trình trên
b) \(x + 2 > 0\) không là bất phương trình bậc hai một ẩn
c) \( - 6{x^2} - 7x + 5 > 0\) là một bất phương trình bậc hai một ẩn
Vì \( - {6.2^2} - 7.2 + 5 = - 33 < 0\) nên \(x = 2\) không là nghiệm của bất phương trình trên
Phương trình bậc hai một ẩn ( nói gọn là phương trình bậc hai ) là phương trình có dạng ... trong đó x là ẩn & hệ số ...
- Giúp mk nha -
Phương trình bậc 2 một ẩn có dạng:
ax2+bx+c=0
Trong đó a,b,c là hệ số và là các số bất kì, x là ẩn và a phải khác 0
Đúng thì tk nha
Cho phương trình bậc hai ẩn x:
(m là tham số).
Tìm m để phương trình có hai nghiệm thỏa mãn hệ thức
\(\Delta'=\left(-2m\right)^2-\left(4m^2-2\right)\)
\(=4m^2-4m^2+2\)
\(=2>0\forall0\)
Theo Vi - ét:
\(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=4m^2-2\end{matrix}\right.\)
\(x^2_1+4mx_2+4m^2-6=0\)
\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2+x_1x_2-4=0\)
\(\Leftrightarrow x_1^2+x_2^2+x_1x_2+x_1x_2-4=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=4\)
\(\Leftrightarrow\left(4m\right)^2=4\)
\(\Leftrightarrow\left|4m\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}4m=2\\4m=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy với \(m=\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\) thì pt có 2 nghiệm x1,x2 thỏa mãn biểu thức ...
Trong các phương trình sau đây phương trình nào là phương trình bậc hai ẩn x?
A. x 3 - 2x2 + 1 = 0
B.x( x 2 - 1) = 0
C.-3 x 2 - 4x + 7 = 0
D. x 4 - 1 = 0
a) Cho hai ví dụ về bất phương trình bậc hai một ẩn.
b) Cho hai ví dụ về bất phương trình mà không phải là bất phương trình bậc hai một ẩn.
a) Ví dụ:
\(\begin{array}{l}{x^2} - x + 1 > 0\\ - {x^2} + 5x + 5 \le 0\end{array}\)
b)
Bất phương trình bậc nhất: \(x - 1 > 0\)
Bất phương trình hai ẩn: \(2x + y < 5\)
Cho phương trình bậc hai (ẩn ): x 2 - (m + 1)x + m – 2 = 0
a) Tìm m để phương trình có hai nghiệm phân biệt x 1 và x 2 .
x 2 - (m + 1)x + m – 2 = 0 (1)
a) Δ = m + 1 2 - 4(m – 2) = m 2 + 2m + 1 – 4m + 8
= m 2 - 2m + 9 = m - 1 2 + 8 > 0 với mọi m.
Vậy với mọi m thuộc R, thì phương trình (1) luôn luôn có hai nghiệm phân biệt x 1 và x 2
Cho phương trình bậc hai (ẩn x): x 2 - 2mx + 2m – 1 = 0
a) Với giá trị nào của m thì phương trình có nghiệm.
x 2 - 2mx + 2m – 1 = 0
Δ = b 2 - 4ac = 2 m 2 - 4.(2m - 1) = 4 m 2 -8m + 4 = 4 m - 1 2
Do Δ = 4 m - 1 2 ≥ 0 ∀ m nên phương trình luôn có nghiệm với mọi m
Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn sau:
\(\left\{ \begin{array}{l}x - 2y + 3 \le 0\\x + 3y > - 2\\x \le 0\end{array} \right.\)
Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn sau.
Bước 1: Mở trang Geoebra
Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô
Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).
Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:
x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.
Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y = - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.