Những câu hỏi liên quan
TT
Xem chi tiết
NM
13 tháng 3 2022 lúc 18:14

undefined

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
TD
5 tháng 5 2020 lúc 16:08

Gọi x1,x2 là các nghiệm của phương trình đã cho

Áp dụng hệ thức Vi-et,ta có :

x1 + x2 = -5 ; x1x2 = -1

gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :

y1 + y2 = x14 + x24 , y1y2 = x14x24

Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27

Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727

y1y2 = ( x1x2 )4 = 1

Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0

Bình luận (0)
 Khách vãng lai đã xóa
NC
5 tháng 5 2020 lúc 16:08

Ta co: P = -1 <0 

=> (1) có 2 nghiệm phân biệt khác dấu 

Gọi hai nghiệm đó là \(x_1;x_2\)

=> \(x_1+x_2=-5;x_1.x_2=-1\)

Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)

\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)

\(=727\)

=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là: 

\(x^2-727x+1=0\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
NT
2 tháng 8 2021 lúc 23:53

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 23:54

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 11 2019 lúc 10:14

Phương trình bậc hai 3x2 + 5x + 2 = 0

Có a = 3; b = 5; c = 2; Δ = b2 – 4ac = 52 – 4.3.2 = 1 > 0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bình luận (0)
VQ
Xem chi tiết
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:34

a) Bình phương hai vế của phương trình\(\sqrt {{x^2} - 3x + 2}  = \sqrt { - {x^2} - 2x + 2} \)ta được:

\({x^2} - 3x + 2 =  - {x^2} - 2x + 2\)(1)

Giải phương trình trên ta có:

\((1) \Leftrightarrow 2{x^2} - x = 0\)

\( \Leftrightarrow x(2x - 1) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(x = \frac{1}{2}\)

b) Thử lại ta có:

Với x=0, thay vào phương trình đã cho ta được: \(\sqrt {{0^2} - 3.0 + 2}  = \sqrt { - {0^2} - 2.0 + 2}  \Leftrightarrow \sqrt 2  = \sqrt 2 \) (luôn đúng)

Với \(x = \frac{1}{2}\), thay vào phương trình đã cho ta được:

\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2}  = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2}  \Leftrightarrow \sqrt {\frac{3}{4}}  = \sqrt {\frac{3}{4}} \) (luôn đúng)

Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.

Bình luận (0)
DT
Xem chi tiết