Những câu hỏi liên quan
PB
Xem chi tiết
CT
15 tháng 5 2017 lúc 15:48

Bình luận (0)
TT
Xem chi tiết
NT
25 tháng 11 2020 lúc 20:32

Bạn tham khảo bài này nha

Link:https://olm.vn/hoi-dap/detail/266831819020.html

Chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
NT
4 tháng 9 2021 lúc 15:25

\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)

\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)

\(=-2x^2y-xy^2\)

\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)

\(=8\cdot3-2\cdot9\)

=6

Bình luận (0)
NH
Xem chi tiết
DV
Xem chi tiết
NM
15 tháng 11 2021 lúc 13:59

\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)

Bình luận (0)
DV
Xem chi tiết
LL
15 tháng 11 2021 lúc 14:35

ĐKXĐ: \(x\ne y\)

a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)

b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)

\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)

 

Bình luận (1)
DT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
AH
13 tháng 12 2023 lúc 19:51

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

Bình luận (1)
AH
13 tháng 12 2023 lúc 19:53

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

Bình luận (0)
VK
1 tháng 11 lúc 21:57

Ko thèm tick cho người ta mà đòi hỏi câu khác ✅

Bình luận (0)
NL
Xem chi tiết