Tính giá trị của biểu thức:
a) A = \(\dfrac{x-y}{x+y}\) biết x2 - 2y2 = xy (y ≠ 0 ; x + y ≠ 0)
b) B = \(\dfrac{3x-2y}{3x+2y}\) biết 9x2 + 4y2 = 20xy và 2y < 3x < 0
Tính giá trị của phân thức A = x - y x + y biết x 2 - 2 y 2 = x y (y ≠ 0; x + y ≠ 0)
Tính giá trị biểu thức P= x-y/x+y . Biết x2 _ 2y2 = xy ( x+y khác 0 , y khác 0 )
Bạn tham khảo bài này nha
Link:https://olm.vn/hoi-dap/detail/266831819020.html
Chúc bạn học tốt
b) Tính giá trị biểu thức A = (x−y)(x2−xy)−x(x2+2y2) tại x=2;y=−3
\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)
\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)
\(=-2x^2y-xy^2\)
\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)
\(=8\cdot3-2\cdot9\)
=6
Rút gọn và tính giá trị biểu thức sau:
P=[{x-y/2y-x-x2+y2+y-2/x2-xy-2y2}:4x4+4x2y+y2-4/x2+y+xy+x]
LƯU Ý:đây là phân thức đại số nhé
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
ĐKXĐ: \(x\ne y\)
a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)
b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)
\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)
Cho biểu thức:
A = (\(\sqrt{x}\) + \(\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)) : (\(\dfrac{x}{\sqrt{xy}+y}\) + \(\dfrac{y}{\sqrt{xy}-x}\) - \(\dfrac{x+y}{\sqrt{xy}}\))
a) Rút gọn A
b) Tính giá trị của biểu thức A biết x = 3; y = 4 + 2\(\sqrt{3}\)
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
Ko thèm tick cho người ta mà đòi hỏi câu khác ✅
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021