Những câu hỏi liên quan
H24
Xem chi tiết
GL
28 tháng 6 2019 lúc 10:24

Lấy (1) cộng (2) ta được

\(\hept{\begin{cases}2x^2+2y^2+4z^2+t^2=122\\x,y,z,t\in N\end{cases}=>}t=2n\)

\(\Leftrightarrow x^2+y^2+2z^2+2n^2=61\)

\(\Rightarrow M=61+2n^2\)

(1) trừ (2)\(\Leftrightarrow y^2+z^2-n^2=20\)

n=0 ; y=2; z=4; x=5

=> Min M =61 khi n=0

(x;y;z;t)=(5;2;4;0)

Bình luận (0)
LA
28 tháng 6 2019 lúc 16:10

Lấy (1) cộng (2) theo từng vế ta có:

\(2\left(x^2+y^2+2z^2+t^2\right)-t^2=122\)

\(\Rightarrow M=\frac{122+t^2}{2}=61+\frac{t^2}{2}\ge61\forall t\)

=> Min M = 61 khi t = 0

Với t = 0 từ (1) \(\Rightarrow x^2-y^2=21\)

Hay: \(\left(x+y\right)\left(x-y\right)=21\)

Vì \(x,y,z,t\in N\) nên ta có 2 TH:

TH1:

\(\hept{\begin{cases}x-y=1\\x+y=21\end{cases}\Leftrightarrow x=11,y=10}\) (loại vì không thỏa mãn (2) )

TH2:

\(\hept{\begin{cases}x-y=3\\x+y=7\end{cases}\Leftrightarrow x=5,y=2}\)(thỏa mãn)

Thay vào (2) ta được: z = 4

Vậy: Min M  = 61 tại x = 5, y = 2, z = 4, t = 0

=.= hk tốt!!

Bình luận (0)
YY
Xem chi tiết
DH
7 tháng 6 2019 lúc 15:41

\(\hept{\begin{cases}x^2-y^2+t^2=21\left(1\right)\\x^2+3y^2+4z^2=101\left(2\right)\end{cases}}\)

Cộng (1) và (2) ta có :

\(2x^2+2y^2+4z^2+t^2=122\Leftrightarrow2\left(x^2+y^2+2z^2+t^2\right)-t^2=122\)

\(\Rightarrow2M=122+t^2\ge122\Rightarrow m\ge61\Rightarrow Min_M=61.\)

Khi \(t=0\Rightarrow\hept{\begin{cases}x^2-y^2=21\\x^2+3y^2+4z^2=101\left(3\right)\end{cases}.}\)

Vì x, y nguyên không âm nên :

\(\left(x-y\right)\left(x+y\right)=21\)

TH1: \(\hept{\begin{cases}x-y=1\\x+y=21\end{cases}\Leftrightarrow}\hept{\begin{cases}x=11\\y=10\end{cases}}\)Thế vào (3) ta được \(4z^2=-320\left(loại\right).\)

TH2: \(\hept{\begin{cases}x-y=3\\x+y=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=5\\y=2\end{cases}.}\)Thế vào (3) ta được \(4z^2=64\Leftrightarrow z^2=16\Leftrightarrow z=4\left(z\ge0\right).\)

Vậy ta tìm được \(\left(x,y,z,t\right)=\left(5;2;4;0\right)\)thì \(Min_M=61.\)

Bình luận (0)
CW
7 tháng 6 2019 lúc 15:55

cộng vế 2 cái đẳng thức đề cho, đc: \(2x^2+2y^2=122-t^2-4z^2\) \(\Rightarrow x^2+y^2=61-\frac{t^2}{2}-2z^2\)

Thay vào M đc: \(M=61+\frac{t^2}{2}\) (t nguyên ko âm) => Min M = 61 khi t =0 

 Giải hệ \(\hept{\begin{cases}x^2+3y^2+4z^2=101\\x^2+y^2+2z^2=61\\x^2-y^2=21\end{cases}}\)sẽ ra đc giá trị của x2, y2, z2. nhưng hệ này vô số nghiệm thì phải

Bình luận (0)
NC
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
H24
14 tháng 4 2018 lúc 13:23

\(\left\{{}\begin{matrix}x^2-y^2+t^2=21\\x^2+3y^2+4z^2=101\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

(1)+(2)\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+4z^2+t^2=122\\x,y,z,t\in N\end{matrix}\right.\) \(\Rightarrow t=2n\)

\(\Leftrightarrow x^2+y^2+2z^2+2n^2=61\) (3)

\(\Leftrightarrow M=61+2n^2\)

(1) trừ (2)\(\Leftrightarrow y^2+z^2-n^2=20\)

n=0 ; y=2; z=4; x=5

=> Min M =61 khi n=0

(x;y;z;t)=(5;2;4;0)


Bình luận (0)
HC
Xem chi tiết
DA
Xem chi tiết
H24
13 tháng 5 2017 lúc 20:34

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1

Bình luận (0)
NN
Xem chi tiết
DL
3 tháng 1 2018 lúc 22:17

dùng hệ số bất định ấy ,lười lắm

Bình luận (0)
NT
4 tháng 1 2018 lúc 23:05

p. tích thành tổng 2 bình phương rồi mincopxki

Bình luận (0)
NP
6 tháng 9 2021 lúc 20:34

Dễ chứng minh được \(2x^2+3xy+2y^2\ge\frac{7}{4}\left(x+y\right)^2\)

                       \(\Leftrightarrow\left(\frac{1}{2}x-\frac{1}{2}y\right)^2\ge0\left(true\right)\)

Một cách tương tự :

\(2y^2+3yz+2z^2\ge\frac{7}{4}\left(y+z\right)^2\)

\(2z^2+3xz+2x^2\ge\frac{7}{4}\left(z+x\right)^2\)

\(\Rightarrow A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)

\(\ge\sqrt{\frac{7}{4}\left(x+y\right)^2}+\sqrt{\frac{7}{4}\left(y+z\right)^2}+\sqrt{\frac{7}{4}\left(z+x\right)^2}\)

\(=\frac{\sqrt{7}}{2}\left(x+y+y+z+z+x\right)=\frac{\sqrt{7}}{2}.6=3\sqrt{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết