\(\left\{{}\begin{matrix}x^2-y^2+t^2=21\\x^2+3y^2+4z^2=101\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1)+(2)\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+4z^2+t^2=122\\x,y,z,t\in N\end{matrix}\right.\) \(\Rightarrow t=2n\)
\(\Leftrightarrow x^2+y^2+2z^2+2n^2=61\) (3)
\(\Leftrightarrow M=61+2n^2\)
(1) trừ (2)\(\Leftrightarrow y^2+z^2-n^2=20\)
n=0 ; y=2; z=4; x=5
=> Min M =61 khi n=0
(x;y;z;t)=(5;2;4;0)