Violympic toán 9

TT

Cho \(M=x^2+y^2+2z^2+t^2\); với x, y, z, t là số tự nhiên. Hãy tìm giá trị nhỏ nhất của M và các giá trị tương ứng của x, y, z, t biết rằng: \(\left\{{}\begin{matrix}x^2-y^2+t^2=21\\x^2+3y^2+4z^2=101\end{matrix}\right.\)

H24
14 tháng 4 2018 lúc 13:23

\(\left\{{}\begin{matrix}x^2-y^2+t^2=21\\x^2+3y^2+4z^2=101\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

(1)+(2)\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+4z^2+t^2=122\\x,y,z,t\in N\end{matrix}\right.\) \(\Rightarrow t=2n\)

\(\Leftrightarrow x^2+y^2+2z^2+2n^2=61\) (3)

\(\Leftrightarrow M=61+2n^2\)

(1) trừ (2)\(\Leftrightarrow y^2+z^2-n^2=20\)

n=0 ; y=2; z=4; x=5

=> Min M =61 khi n=0

(x;y;z;t)=(5;2;4;0)


Bình luận (0)

Các câu hỏi tương tự
HC
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
VT
Xem chi tiết
LS
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
BL
Xem chi tiết
ND
Xem chi tiết