Cho dãy số thỏa mãn u1 = 5; un+1 = 3un+ 4/3. Giá trị nhỏ nhất của n để u1 + u2 + … + un > 5100 - 2/3n là
A. 141
B. 142
C. 145
D. 146
Cho dãy số ( u n ) thỏa mãn u 1 = 1 u n = 2 u n - 1 + 1 , n ≥ 2 . Tổng S = u 1 + u 2 + . . . + u 20 bằng
A. 2 20 - 20
B. 2 21 - 20
C. 2 20
D. 2 21 - 20
Cho dãy số u n thỏa mãn u 1 = 1 u n - 2 u n - 1 + 1 , n ≥ 2 . Tổng S = u 1 + u 2 + . . . + u 20 bằng
A. 2 20 - 20
B. 2 21 - 22
C. 2 20
D. 2 21 - 20
Cho dãy số u n thỏa mãn u 1 = 2018 ; u n + 1 = u n + n 2 với n. Có bao nhiêu số nguyên dương n thỏa mãn u n ≤ 330368
A. 2017.
B. 100.
C. 101.
D. 2018.
Cho dãy số u n thỏa mãn u 1 = 2 3 và u n + 1 = u n 2 2 n + 1 u n + 1 n ≥ 1 . Tìm số nguyên dương n nhỏ nhất thỏa mãn log 1 2 u n > 12 , 3 .
A. n=50
B. n=60
C. n=51
D. n=61
Cho dãy số u n thỏa mãn log 3 2 u 5 - 63 = 2 log 4 u n - 8 n + 8 , ∀ n ∈ N * . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số nguyên dương lớn nhất n thỏa mãn u n . S 2 n u 2 n . S n < 148 75
A. 18
B. 17
C. 16
D. 19
Cho dãy số u n xác định bởi u 1 = 5 , u n + 1 n + 1 = u n n + 2 n + 2 . 3 n với mọi n ≥ 1 . Tìm số nguyên nhỏ nhất thỏa mãn u n n - 2 n > 5 100
A. 146.
B. 233.
C. 232.
D. 147.
Cho dãy số ( u n ) xác định bởi u 1 = 5 , u n + 1 n + 1 = u n n + 2 n + 2 . 3 n với mọi n ≥ 1 . Tìm số nguyên nhỏ nhất thỏa mãn u n n - 2 n > 5 100
A. 146.
B. 233.
C. 232.
D. 147.
Cho dãy số (un) thỏa mãn log u 1 + - 2 + log u 1 - 2 log u 8 = 2 log u 10 và un+1 = 10un, ∀ n ∈ R* Khi đó u2018bằng
A. 102000
B. 102008
C. 101008
D. 102017
Chọn A.
Dễ thấy un là cấp số nhân với q = 10
Ta có: u8 = 107u1; u10 = 109u1
Do đó PT
Giải PT ta được logu1 = -17 ⇔ u1 = 10-17 ⇒ u2018 = 102017 u1 = 102000
cho dãy số (un) thỏa mãn U1 = 2 ; Un = 2U(n-1)+3n -1.tìm số hạng thứ 2019
\(u_n=2u_{n-1}+3n-1\)
\(\Leftrightarrow u_n+3n+5=2\left(u_{n-1}+3\left(n-1\right)+5\right)\)
Đặt \(u_n+3n+5=v_n\Rightarrow\left\{{}\begin{matrix}v_1=10\\v_n=2v_{n-1}\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội 2
\(\Rightarrow v_n=10.2^{n-1}\Rightarrow u_n+3n+5=10.2^{n-1}\)
\(\Leftrightarrow u_n=10.2^{n-1}-3n-5\)
\(\Rightarrow u_{2019}=10.2^{2018}+3.2019-1=...\)