Những câu hỏi liên quan
HL
Xem chi tiết
MC
Xem chi tiết
TK
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
H24
3 tháng 10 2018 lúc 18:24

\(ab=ca=>\frac{c}{b}=\frac{b}{a}\)

\(dat\frac{c}{b}=\frac{b}{a}=k=>c=bk,b=ak,a=\frac{b}{k}\)

\(mafc+a+b=91=>bk+ak+\frac{b}{k}=91\)

\(=>k.\left(b+a+\frac{b}{k^2}\right)=91\)

k,(b+a+b/k^2) thuộc U(91)={7,-7,13,-13}

vì a,b,c là số nguyên dương=>k,(b+a+b/k^2) ={7,13}

thay vào rồi tính

.....sai thì cứ sai đừng chửi nha 

Bình luận (0)
H24
3 tháng 10 2018 lúc 18:38

Đặt \(b=ka\) và \(c=k^2a\) \(\left(k>1\right)\)thì ra được \(a\left(1+k+k^2\right)\)\(=91\)

Phân tích 91 ra thừa số nguyên tố ta có      \(91=7.13\)

Xét Trường Hợp 1 : Nếu k là số tự nhiên thì ta được

\(\hept{\begin{cases}a=1\\1+k+k^2=91\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\k=9\end{cases}\Rightarrow}a=1;b=9;c=81}\)

\(\hept{\begin{cases}a=7\\1+k+k^2=13\end{cases}\Leftrightarrow\hept{\begin{cases}a=7\\k=3\end{cases}\Rightarrow}a=7;b=21;c=63}\)

\(\hept{\begin{cases}a=13\\1+k+k^2=7\end{cases}\Leftrightarrow\hept{\begin{cases}a=13\\k=2\end{cases}\Rightarrow}a=13;b=26;c=52}\)

Xét Trường Hợp 2

Nếu k là số hữu tỉ thì giả sử : \(k=\frac{x}{y}\) (\(x\ge3;y\ge2\))

Khi đó : \(a\left(1+k+k^2\right)=91\Leftrightarrow a\left(x^2+xy+y^2\right)\) \(=91y^2\left(x^2+xy+y^2\ge19\right)\)

Ta có : \(c=\frac{ax^2}{y^2}\in Z\Rightarrow\frac{a}{y^2}\in Z\Rightarrow a=ty^2\Rightarrow x^2+xy+y^2=91\Rightarrow x=6;y=5\)

và \(a=25;b=30;c=36\)

Vậy có 8 trường hợp thỏa mãn điều kiện trên : \(\left(1;9;81\right);\left(81;9;1\right);\left(7;21;63\right);\left(63;21;7\right);\left(13;26;52\right);\left(52;26;13\right);\left(25;30;36\right);\left(36;30;25\right)\)

Bình luận (0)
 .
Xem chi tiết
TD
29 tháng 9 2018 lúc 12:33

Vì  \(b^2=ca\)

\(\Rightarrow c.a=b.b\)

\(\Rightarrow c=a=b\)

\(\Rightarrow c+a+b=3b\)

\(\Rightarrow a+b+c=91\)

+)  \(3.b=91\)

\(\Rightarrow b=27\)

Vì \(a=b=c\)

Mà \(b=27\)

\(\Rightarrow a=b=c=27\)

Bình luận (0)
TT
30 tháng 9 2018 lúc 21:28

Đặt  thì ta được

Trường hợp 1: Nếu  là số tự nhiên thì ta được

 

Trường hợp 2: Nếu  là số hữu tỷ thì giả sử  

Khi đó

Ta có

Vậy có 8 bộ số  thỏa mãn

Bình luận (0)
NT
7 tháng 10 2018 lúc 9:31

Trần Hương Giang sai 91 không chia hết cho 3

Bình luận (0)