Những câu hỏi liên quan
AD
Xem chi tiết
AD
14 tháng 10 2021 lúc 7:01

e đang cần gấp mn ạ

 

 

Bình luận (0)
NM
14 tháng 10 2021 lúc 7:42

Hai vị trí cách nhau 12m tức là \(AB=12\left(m\right)\)

Ta có \(\tan\widehat{A}=\dfrac{CD}{AD}=\tan20^0\approx0,4\Leftrightarrow AD=\dfrac{CD}{0,4}\)

\(\tan\widehat{CBD}=\dfrac{CD}{BD}=\tan35^0\approx0,7\Leftrightarrow BD\approx\dfrac{CD}{0,7}\)

Ta có \(AD-BD=AB=12\)

\(\Leftrightarrow\dfrac{CD}{0,4}-\dfrac{CD}{0,7}=12\Leftrightarrow CD=\dfrac{56}{5}=11,2\left(m\right)\)

Vậy...

Bình luận (0)
BT
Xem chi tiết
NT
1 tháng 3 2016 lúc 13:04

ve hinh thang vuong ABED co AD//BC ; va ED vuong goc voi BC keo dai ;
E thuoc BC keo dai(hinh chieu cua BC tren mat dat)
.D la diem duoi mat dat cua A AD=7m; BC=5m
Cac goc 40 ; 50 do la giua AC ; AB voi phuong nam ngang .
Ta tinh duoc DE theo BC : DE =BC/(tan50-tan40)
=> Bc da biet tan ta tra duoc .Con CE la chieu cao cua nha :
Vay : CE=AD+DE*tan40= 7+5*tan40/(tan50-tan40)

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 0:44

Gọi C là vị trí ngọn hải đăng và H là hình chiếu của C trên AB.

Khi đó CH là khoảng cách từ ngọn hải đăng tới bờ biển.

Ta có: \( \widehat {ACB} = \widehat {HBC} - \widehat {BAC} = {75^o} - {45^o} = {30^o}; \,  \widehat {ABC} = {180^o} - {75^o} = {105^o}\)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\)

\( \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {105^o}.\frac{{30}}{{\sin {{30}^o}}} \approx 58\)

Tam giác ACH vuông tại H nên ta có:

\(CH = \sin A.AC = \sin {45^o}.58 \approx 41\)

Vậy ngọn hải đăng cách bờ biển 41 m.

Bình luận (0)
QL
Xem chi tiết
KT
24 tháng 9 2023 lúc 15:29

Tham khảo:

a)

 

Gọi H là hình chiếu của A lên đường thẳng BC.

Ta có: \(\widehat {HAB} = {50^o}\); \(\widehat {HAC} = {40^o}\)

\( \Rightarrow \widehat {BAC} = {50^o} - {40^o} = {10^o}\) (1)

Xét tam giác ABH, vuông tại H ta có:

\(\widehat H = {90^o};\;\widehat {BAH} = {50^o}.\)

\( \Rightarrow \widehat {HBA} = {180^o} - {90^o} - {50^o} = {40^o}\) hay \(\widehat {CBA} = {40^o}\). (2)

Từ (1) và (2), suy ra: \(\widehat {BCA} = {180^o} - {40^o} - {10^o} = {130^o}.\)

Vậy ba góc của tam giác ABC lần lượt là: \(\widehat A = {10^o};\;\widehat B = {40^o};\;\widehat C = {130^o}\).

b)

Áp dụng định lý sin cho tam giác ABC, ta được:

 \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\) \( \Rightarrow AB = \frac{{BC.\sin C}}{{\sin A}}\)

Mà: \(BC = 5\;(m);\;\;\widehat C = {130^o};\;\widehat A = {10^o}\)

\( \Rightarrow AB = \frac{{5.\sin {{130}^o}}}{{\sin {{10}^o}}} \approx 22\;(m)\)

Xét tam giác ABH, vuông tại H ta có:

\(\sin \widehat {BAH} = \frac{{BH}}{{AB}}\)\( \Rightarrow BH = AB.\,\,\sin \widehat {BAH}\)

Mà: \(AB \approx 22\;(m);\;\;\widehat {BAH} = {50^o}\)

\( \Rightarrow BH \approx 22.\sin {50^o} \approx 16,85\;(m)\)

Vậy chiều cao của tòa nhà là: \(BH-{\rm{ }}BC + 7 = 16,85-5 + 7 = 18,85{\rm{ }}\left( m \right)\)

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 0:42

Gọi A là vị trí đứng của Nam, B là điểm cao nhất của cây, C là vị trí gốc cây.

Gọi H là hình chiếu của A trên BC. Ta có hình vẽ:

TH1: Cây cao hơn tòa nhà

Ta có: \(\tan {24^ \circ } = \frac{{BH}}{{AH}} \Rightarrow BH = 30.\tan {24^ \circ } \approx 13,357\)

\( \Rightarrow BC = BH + HC \approx 13,357 + 1,5 + 18,5 = 33,357(m)\)

TH2: Cây thấp hơn tòa nhà

Ta có: \(\tan {24^ \circ } = \frac{{BH}}{{AH}} \Rightarrow BH = 30.\tan {24^ \circ } \approx 13,357\)

\( \Rightarrow BC = HC -HB  \approx  1,5 + 18,5 - 13,357= 6,643(m)\)

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 3 2017 lúc 5:26

Đáp án C.

Màn biểu diễn của Dynano được biểu diễn theo mô hình bên

Cách 1: Áp dụng kiến thức “Giá trị lớn nhất – Giá trị nhỏ nhất của hàm số”

Ta có   A B = c , A C = a , A D = b , A M = x . Khi đó  C M = A C 2 + A M 2 = x 2 + a 2

M D = B M 2 + B D 2 = ( c − x ) 2 + b 2 = x 2 − 2 c x + b 2 + c 2  

Như vậy quãng đường di chuyển của Dynano là 

T = C M + M D = x 2 + a 2 + x 2 − 2 c x + b 2 + c 2 ( 0 < x < c ) .

Xét hàm số x 2 + a 2 + x 2 − 2 c x + b 2 + c 2 trên ( 0 ; c ) .  

Đạo hàm f ' ( x ) = x x 2 + a 2 + x − c x 2 − 2 c x + b 2 + c 2 = 0  

⇔ x x 2 − 2 c x + b 2 + c 2 = ( c − x ) x 2 + a 2 ⇔ x 2 c − x 2 + b 2 = c − x 2 x 2 + a 2  

⇔ x 2 b 2 = c - x 2 a 2 ⇔ b x = ( c − x ) a ⇔ x = a c a + b ∈ ( 0 ; c ) .

Lập bảng biến thiên tìm ta được f(x)  đạt nhỏ nhất khi   x = a c a + b .

Cách 2: Dùng kiến thức hình học

Gọi D' là điểm đối xứng với D qua AB. Khi đó  M C + M D = M C + M D ' ≥ C D ' . Do vậy  ( M C + M D ) min = C D ' . Dấu =  xảy ra khi M ∈ C D '  hay M = C D ' ∩ A B  .

Khi đó Δ A M C ∽ △ B M D '

  ⇒ A M B M = A C B D ' ⇔ x c − x = a b ⇔ x = a c a + b

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 12 2017 lúc 4:55

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 12 2023 lúc 21:37

Câu 3:

Xét ΔCAB có \(\dfrac{CB}{sinA}=\dfrac{CA}{sinB}\)

=>\(\dfrac{260}{sin45}=\dfrac{CA}{sin30}\)

=>\(CA\simeq183,85\left(m\right)\)

Câu 4:

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)EB tại C

Xét ΔABE vuông tại A có AC là đường cao

nên \(BC\cdot BE=BA^2=\left(2R\right)^2=4R^2\)

b: Ta có: ΔOAD cân tại O

mà OE là đường cao

nên OE là phân giác của góc AOD

Xét ΔOAE và ΔODE có

OA=OD

\(\widehat{AOE}=\widehat{DOE}\)

OE chung

Do đó: ΔOAE=ΔODE

=>\(\widehat{OAE}=\widehat{ODE}=90^0\)

Xét tứ giác EAOD có

\(\widehat{EAO}+\widehat{EDO}=90^0+90^0=180^0\)

=>EAOD là tứ giác nội tiếp

=>E,A,O,D cùng thuộc một đường tròn

c: Xét (O) có

OD là bán kính

ED\(\perp\)DO tại D

Do đó: ED là tiếp tuyến của (O)

Xét (O) có

\(\widehat{EDC}\) là góc tạo bởi tiếp tuyến DE và dây cung DC

\(\widehat{CBD}\) là góc nội tiếp chắn cung DC

Do đó: \(\widehat{EDC}=\widehat{CBD}\)

=>\(\widehat{EDC}=\widehat{EBD}\)

Xét ΔEDC và ΔEBD có

\(\widehat{EDC}=\widehat{EBD}\)

\(\widehat{DEC}\) chung

Do đó: ΔEDC đồng dạng với ΔEBD

=>\(\widehat{ECD}=\widehat{EDB}\)

Bình luận (0)
PA
Xem chi tiết
NH
20 tháng 1 2022 lúc 8:32

mk nghĩ là 14.45 feet

Bình luận (4)
TQ
24 tháng 6 2023 lúc 7:50

Chiều cao mô hình toà nhà:

289 : 20 = 14,45(ft)

Bình luận (0)