Cho tam giác ABC cân tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc với AB; kẻ DF vuông góc với AC
Chứng minh rằng:
a)tam giác DEB = tâm giác DFC. b) tam giác AED= tam giác AFD
c) AD là tiaphân giác của BAC
cho tam giác abc cân tại a. gọi d là trung điểm của cạnh bc. kẻ DE vuông góc với AB DF vuông góc AC.Chứng minh tam giác DEF cân
Hình nháp thôi em .
Ta có : \(\Delta ABC\) cân tại A
\(\Rightarrow\) góc ABC \(=\) góc ACB
Ta có : D là trung điểm của BC
\(\Rightarrow DB=DC\)
Xét \(\Delta BDE\) và \(\Delta CDF\) lần lượt vuông tại E và F có :
góc ABC \(=\) góc ACB (cmt)
\(DB=DC\left(cmt\right)\)
Do đó : \(\Delta BDE=\Delta CDF\left(ch-gn\right)\)
\(\Rightarrow DE=DF\)
\(\Rightarrow\Delta DEF\) cân tại D
Cho tam giác ABC cân tại A. Gọi D là trung điểm cạnh BC. Kẻ DE vuông góc với AB , DF vuông góc với AC. chứng minh
a EB=FC
b AD là đg trung trực của BC
c tam giác AED = tam giác ÀD
d EF // BC
a: Xét ΔEBD vuông tại E và ΔFCD vuông tại F có
BD=CD
\(\widehat{B}=\widehat{C}\)
Do đó: ΔEBD=ΔFCD
Suy ra: EB=FC
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là trung trực của BC
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
DE=DF
Do đó: ΔAED=ΔAFD
d: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Cho tam giác ABC cân tại a gọi d là trung điểm của cạnh BC kẻ DE vuông góc với AB df vuông góc với AC a chứng minh tam giác dei bằng tam giác DEF sea b chứng minh tam giác aed và tam giác afd
a. lỗi
b. Xét tam giác ABD và tam giác ACD:
AB = AC (tam giác ABC cân tại A)
AD chung
BD = CD ( D là trung điểm BC)
=> tam giác ABD = tam giác ACD (c-c-c)
=> góc BAD = góc CAD (2 góc tương ứng)
Xét tam giác AED và tam giác AFD:
AED = AFD (DE ⊥ AB
DF ⊥ AC)
góc BAD = góc CAD (cmt)
AD chung
=> tam giác AED và tam giác AFD (ch-gn) (đpcm)
cho tam giác ABC cân tại A , kẻ BH vuông góc với AC .Gọi D là 1 điểm của cạnh đáy BC . Kẻ DE vuông góc AC , DF vuông góc với AB . Chứng minh rằng DE + DF = BH
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC. Gọi D là một điểm thuộc cạnh đấy BC. Kẻ DE vuông góc với AC, DF vuông góc với AB. Chứng minh DE+DF=BH
Em tham khảo nhé
Kẻ DK vuông góc với BH
Xét từ giác DKHE có góc K = góc E = góc H = 90 độ => tứ giác DKHE là HCN
=> DE = KH
DK//AC => góc KDB = góc ACB(đồng vị)
Mà góc ACB = góc ABC (tam giác ABC cân tại A)
=> góc KDB = góc FBC
Xét tam giác BDF và tam giác DBK có
Góc BFD = góc DKB = 90 độ
BD chung
góc DBF = góc BDK
=> tam giác BFD = tam giác DBK (g.c.g)
=> BK = DF
Ta có BH = BK + KH
Mà BK = DF, KH = DE
=> BH = DE + DF (đpcm)
Cho tam giác ABC cân tai A. Gọi Ià trung điểm cạnh BC kẻ ID vuông góc AB tại D kẻ IE vuông góc AC tai E
A Chứng minh Tam giác ABI = Tam giác ACI
B Chứng minh Tam giác IDE cân
C Chứng minh DE song song với BC
giúp em với ạ mọi người thank moi người nhiều nha
a) Xét tam giác ABI và ACI ta có :
\(AB=AC\)
\(AI:chung\)
\(BI=CI\)
\(\Rightarrow\Delta ABI=\Delta ACI\)
b) + c) bị che
a. xét tam giác ABI và tam giác ACI có:
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AI: cạnh chung
Vậy......
b. xét tam giác vuông BID và tam giác vuông CIE có:
góc B = góc C ( ABC cân )
IB = IC ( gt)
Vậy....
=>ID = IE ( 2 góc tương ứng )
=> tam giác IDE cân tại I
=> BD = CE
c. gọi N là giao điểm của DE và AI
ta có: AD=AE ( ABC cân, BD = CE )
=> ADE cân tại A
ta lại có AI là đường trung tuyến cũng là phân giác góc A
=> A cũng là phân giác trong tam giac ADE
mà trong tam giác cân ADE đường phân giác cũng là đường cao (1)
trong tam giác cân ABC đường trung tuyến cũng là đường cao ( 2 )
từ (1) và ( 2 ) => DE // BC ( 2 góc cùng vuông với 1 đường thẳng )
Cho tam giác ABC cân tại A. Gọi I là trung điểm cạnh BC, kẻ ID vuông góc với AB tại D, kẻ IE vuông góc với AC tại E.
a) CM: tam giác ABI = tam giác ACI.
b) CM: tam giác BDI = tam giac CEI
c) CM: DE song song với BC
d) CM: AB^2 = AD^2 + BD^2 + 2DI^2
Mình làm phần d) thôi nhé!
Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:
Tam giác ABI = Tam giác ACI)
mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)
=>\(\widehat{AIB}=\widehat{AIC}=90\)
Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:
\(AB^2=AI^2+BI^2\)(1)
Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:
\(AI^2=AD^2+DI^2\)(2)
Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:
\(BI^2=DI^2+BD^2\)(3)
Thay (2),(3) vào (1) ta có được:
\(AB^2=AD^2+DI^2+DI^2+BD^2\)
(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)
cho tam giác ABC cân tại A , kẻ BH vuông góc với AC . gọi D là một điểm thuộc cạnh đáy BC . kẻ DE vuông góc với AC , DF vuông góc với AB . cm rằng DE+DF=BH
Cho tam giác ABC cân tại A, kẻ BH vuông góc AC. Gọi D là một điểm thuộc cạnh đáy BC. Kẻ DE vuông góc với AC, DF vuông góc với AB. Chứng minh rằng DE+DF= BH
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân