Những câu hỏi liên quan
TA
Xem chi tiết
NT
2 tháng 2 2022 lúc 23:19

Sửa đề: D là trung điểm của AE

Xét ΔEAC có 

D là trung điểm của AE
I là trung điểm của CE

Do đó: DI là đường trung bình

=>DI//AC và DI=AC/2

Xét ΔEBC có 

F là trung điểm của BC

I là trung điểm của EC

Do đó: FI là đường trung bình

=>FI//EB và FI=EB/2

Ta có: FI=EB/2

DI=AC/2

mà EB=AC
nên IF=ID

hay ΔIFD cân tại I

=>\(\widehat{IFD}=\widehat{IDF}\)

mà \(\widehat{DFI}=\widehat{FDB}\)(FI//AB)

nên \(\widehat{FDI}=\widehat{FDB}\)

\(\Leftrightarrow\widehat{BDI}=2\cdot\widehat{IDF}\)

hay \(\widehat{BAC}=2\cdot\widehat{IDF}\)

Bình luận (0)
NT
2 tháng 2 2022 lúc 23:20

Sửa đề: D là trung điểm của AE

Xét ΔEAC có 

D là trung điểm của AE
I là trung điểm của CE

Do đó: DI là đường trung bình

=>DI//AC và DI=AC/2

Xét ΔEBC có 

F là trung điểm của BC

I là trung điểm của EC

Do đó: FI là đường trung bình

=>FI//EB và FI=EB/2

Ta có: FI=EB/2

DI=AC/2

mà EB=AC
nên IF=ID

hay ΔIFD cân tại I

=>\(\widehat{IFD}=\widehat{IDF}\)

mà \(\widehat{DFI}=\widehat{FDB}\)(FI//AB)

nên \(\widehat{FDI}=\widehat{FDB}\)

\(\Leftrightarrow\widehat{BDI}=2\cdot\widehat{IDF}\)

hay \(\widehat{BAC}=2\cdot\widehat{IDF}\)

Bình luận (0)
NH
Xem chi tiết
H24
24 tháng 2 2021 lúc 16:09

a) △ABM và △ECM có:

\(MB=MC\\ \widehat{AMB}=\widehat{CME}\\ AM=ME\)

\(\Rightarrow\text{△ABM = △ECM (c.g.c)}\)

b) \(\text{△ABM = △ECM}\\ \Rightarrow\widehat{ABM}=\widehat{ECM}\)

Mà 2 góc ở vị trí so le trong

\(\Rightarrow\) AB // CE (dấu hiệu nhận biết)

c) \(\text{△ACM và △EBM có:}\\ AM=EM\\ \widehat{AMC}=\widehat{BME}\\ CM=BM\\ \Rightarrow\text{△ACM = △EBM (c.g.c)}\\ \Rightarrow\widehat{CAM}=\widehat{BEM}\\ \text{△AIM và △EKM có:}\\ AI=EK\\ \widehat{IAM}=\widehat{KEM}\\ AM=EM\\ \Rightarrow\text{△AIM = △EKM (c.g.c)}\\ \Rightarrow MI=MK\)

Bình luận (0)
NT
24 tháng 2 2021 lúc 20:59

a) Xét ΔABM và ΔECM có 

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔABM=ΔECM(c-g-c)

Bình luận (0)
TN
Xem chi tiết
NT
31 tháng 8 2021 lúc 14:22

Bài 1: 

a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC

nên AD⊥BC

b: Ta có: AE+BE=AB

AF+FC=AC

mà BE=CF

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)

Bình luận (0)
TN
Xem chi tiết
FH
Xem chi tiết
PN
Xem chi tiết
NT
6 tháng 12 2023 lúc 13:00

1: Xét ΔABH và ΔAEH có

AB=AE

BH=EH

AH chung

Do đó: ΔAHB=ΔAHE

2: ΔAHB=ΔAHE

=>\(\widehat{AHB}=\widehat{AHE}\)

mà \(\widehat{AHB}+\widehat{AHE}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHE}=\dfrac{180^0}{2}=90^0\)

=>AH\(\perp\)BE

3: Sửa đề: Kẻ tia Ax//BE, trên Ax lấy I sao cho AI=BE(I và B nằm cùng phía so với AH)

a: Xét tứ giác ABFE có

H là trung điểm chung của AF và BE

=>ABFE là hình bình hành

=>BF=AE và BF//AE

b:

Xét tứ giác AEBI có

AI//BE

AI=BE

Do đó: AEBI là hình bình hành

=>BI//AE

Ta có: BF//AE

BI//AE

BI,BF có điểm chung là B

Do đó: F,B,I thẳng hàng

loading...

Bình luận (0)
NL
Xem chi tiết
NL
14 tháng 10 2021 lúc 18:20

giải giúp mình vs ạ

 

Bình luận (0)
TT
Xem chi tiết
TA
Xem chi tiết
PL
8 tháng 6 2023 lúc 9:24

A B C D E I

a) chứng minh \(\Delta ABC=\Delta ADC\)

xét 2 tam giác vuông ABC và ADC:

có AC: cạnh chung

AD=AB (gia thiết) 

=> \(\Delta ABC=\Delta ADC\) (2cgv)

 

b) chứng minh DC//BE

xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE

 

c) chứng minh BE = 2AI

ta có BEDC là hình bình hành => BE=DC

lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)

chúc em học tốt

Bình luận (0)
TA
8 tháng 6 2023 lúc 9:49

Cậu tự vẽ hình nhé.

a,  Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:

                       AB = AD(gt)

                       AC chung 

          \(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)

b, Ta có \(DB\perp EC\) tại \(A\)

 mà \(DA=AB\left(gt\right)\)

        \(AE=AC\left(gt\right)\)

\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )

\(\Rightarrow DC//BE\) ( tính chất hình thoi )

c,   Xét \(\Delta DAC\) vuông tại A có:

      I là trung điểm của DC 

 \(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)

\(\Rightarrow2AI=DC\) 

Lại có DC = EB ( DCBE là hình thoi )

\(\Rightarrow2AI=BE\)

Bình luận (0)
TA
9 tháng 6 2023 lúc 14:04

B A C D E I  Hình vẽ của mình đây

Bình luận (0)