Những câu hỏi liên quan
PB
Xem chi tiết
CT
18 tháng 4 2017 lúc 2:25

Để hai đường thẳng d1;  d2 cắt nhau tại một điểm nằm trên d3 khi và chỉ khi 3 đường thẳng d1;  d2; d3 đồng quy.

Giao điểm của d1 và d3 là nghiệm hệ phương trình:

x − 2 y ​ + 1 = 0 x + ​ y − 5 = 0 ⇔ x = 3 y = 2 ⇒ A ( 3 ;    2 )

Do 3 đường thẳng này đồng quy  nên điểm A thuộc d2. Suy ra:

3m -  (3m-2).2 + 2m – 2= 0

⇔ 3m – 6m + 4 + 2m – 2 =  0  ⇔  - m  + 2 = 0  ⇔  m= 2

Với m= 2 thì đường thẳng d2 :  2x -  4y  + 2= 0 hay  x- 2y + 1 =0 . Khi đó, đường thẳng d1 và d2 trùng nhau.

Vậy không có giá trị nào của m thỏa mãn.

ĐÁP ÁN D

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 12 2017 lúc 12:55

Ta có:  1 1 =    2 2 ​​ ≠ − 4 6

Suy ra:  d1 // d2.

Do đó, đường tròn tiếp xúc với cả hai đường thẳng song song thì khoảng cách hai đường thẳng đó bằng đường kính của đường tròn.

* Tính khoảng cách 2 đường thẳng :

Đáp án A

Bình luận (0)
NA
Xem chi tiết
LP
19 tháng 11 2023 lúc 8:31

a) Thay hoành độ và tung độ của A vào 2 pt đường thẳng (d1) và (d2), ta lần lượt được:

 \(1=3\left(-1\right)+4\) (luôn đúng)

 \(-1-2.1=0\) (vô lí)

Như vậy, \(A\in d_1;A\notin d_2\)

b) Gọi giao điểm của d1, d2 là \(B\left(x_0;y_0\right)\). Khi đó \(x_0,y_0\) là các số thỏa mãn \(\left\{{}\begin{matrix}y_0=3x_0+4\\x_0-2y_0=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_0=6y_0+4\\x_0=2y_0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_0=-\dfrac{4}{5}\\x_0=-\dfrac{8}{5}\end{matrix}\right.\)

Vậy giao điểm của d1 và d2 là \(B\left(-\dfrac{8}{5};-\dfrac{4}{5}\right)\)

c) Để đường thẳng d1, d2, d3 đồng quy thì d3 phải đi qua giao điểm của d1 và d2. Nói cách khác, d3 phải đi qua điểm \(B\left(-\dfrac{8}{5};-\dfrac{4}{5}\right)\)

\(\Leftrightarrow\left(m-1\right).\dfrac{-8}{5}+\left(m-2\right).\dfrac{-4}{5}+m+1=0\)

\(\Leftrightarrow\dfrac{21}{5}-\dfrac{7}{5}m=0\)

\(\Leftrightarrow m=3\)

Vậy \(m=3\) thỏa mãn ycbt.

Bình luận (0)
LP
Xem chi tiết
PB
Xem chi tiết
CT
7 tháng 12 2017 lúc 12:58

Đáp án B.

Gọi 

thuộc d 1 và

thuộc d 2   là 2 giao điểm.

Ta có:  

Vì M N →  cùng phương với

 nên ta có:

 điểm này thuộc đường thẳng ở đáp án B.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 12 2019 lúc 3:14

Đáp án D

Gọi I là giao điểm của hai đường thẳng d1; d2 . Tọa độ điểm I là nghiệm của hệ:

Lấy điểm  m 1 ; 0 ∈ d 1  . Đường thẳng qua M và vuông góc với d2 có phương trình: 3x + y-3= 0

Gọi  H = ∆ ∩ d 2  suy ra tọa độ điểm H là nghiệm của hệ:

Phương trình đường thẳng

có dạng:

hay x-3y + 3= 0

Bình luận (0)
TD
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 1 2017 lúc 8:46

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 12 2018 lúc 5:04

Đáp án B.

Gọi  M 2 a − 3 ; − 2 − a ; − 2 − 4 a thuộc  d 1  và N − 1 + 3 b ; − 1 + 2 b ; 2 + 3 b  thuộc  d 2  là 2 giao điểm.

Ta có:

M N → = 3 b − 2 a + 2 ; 2 b + a + 1 ; 3 b + 4 a + a .

Vì M N → cùng phương với n P → = 1 ; 2 ; 3  nên ta có:

3 b − 2 a + 2 1 = 2 b + a + 1 2 = 3 b + 4 a + 4 3 ⇔ a = − 1 b = − 2

⇒ M − 5 ; − 1 ; 2 ,  điểm này thuộc đường thẳng ở đáp án B.

Bình luận (0)