Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NH
Xem chi tiết
TM
1 tháng 5 2019 lúc 11:50

thêm cái ĐK cho mẫu số khác 0: \(b\ne d\)

Bình luận (0)
TD
Xem chi tiết
DA
Xem chi tiết
TN
16 tháng 3 2023 lúc 21:19

\(\left.\begin{matrix} b^2=ac\Rightarrow \dfrac{a}{b}=\dfrac{b}{c} \\c^2=bd \Rightarrow \dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right\}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng t/c của DTSBN , ta có :

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{a^3+b^3+c^3}{d^3+c^3+d^3}\left(1\right)\)

Có `a^3/b^3=a/b*a/b*a/b=a/b*b/c*c/d=a/d` ( do `a/b=b/c=c/d` )`(2)

Từ `(1);(2)=>` \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Bình luận (0)
TT
Xem chi tiết
QS
Xem chi tiết
H24
24 tháng 10 2016 lúc 19:50

1

Bình luận (0)
H24
24 tháng 10 2016 lúc 19:50

1

Bình luận (0)
H24
24 tháng 10 2016 lúc 19:50

1

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
VT
21 tháng 10 2019 lúc 21:24

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
KS
6 tháng 10 2019 lúc 6:41

Ta có :

\(c=\frac{bd}{b-d}\)

\(\Rightarrow b-d=\frac{bd}{c}\left(c\ne0\right)\)

\(a=b+c\Rightarrow c=a-b\)

\(\Rightarrow c=\frac{bd}{b-d}=a-b\)

\(\Rightarrow bd=\left(a-b\right).\left(b-d\right)\)

\(\Rightarrow ab-ad-b^2+bd=bd\)

\(\Rightarrow a\left(b-d\right)-b^2=0\)

\(\Rightarrow a.\frac{bd}{c}-b^2=0\)

\(\Rightarrow\frac{ad}{c}-b=0\)

\(\Rightarrow\frac{ad-bc}{c}=0\)

\(\Rightarrow ad-bc=0\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)