Chúc bạn học tốt!
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chúc bạn học tốt!
Bài 1:Tìm 3 số a,b,c biết
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\) và a+b+c= -50
Bài 2: Chứng minh rằng:Nếu các số a,b,c,d thỏa mãn:
[ab(ab-2cd)+c2.d2].[ab(ab-2)+2(ab+1)] =0
Thì a,b,c,d lập thành một tỉ lệ thức
Bài 3:Cho b2= a.c; c2=b.d (c,b,d\(\ne0\) và b+c\(\ne0\) ; b3+d3\(\ne d^3\) )
CMR \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
Bài 4: Cho b2 = a.c (a,c\(\ne0\) )
CMR \(\dfrac{a}{c}=\left(\dfrac{2016a-2017b}{2016b-2017c}\right)^2\)
Cho b2=a.c và c2=b.d (a b c d là các số khác 0 b+c khác d và b3+c3 khác d3
Chứng minh rằng \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=(\dfrac{a+b-c}{b+c-d})^3\)
cho \(\frac{a}{b}=\frac{c}{d}\)chung minh rang:
\(\frac{a}{a-b}=\frac{c}{c-d}\) \(\frac{a}{b}=\frac{a+c}{b+d}\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) \(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)\(\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)
cho \(b^2=a.c-a^2=b.d\)
c/m:\(\dfrac{a^3+b^3-c^3}{b^3+c^2-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^2\)
Bài 1 : Cho 4 số a , b ,c khác 0 thỏa mãn \(^2=ac;c^2=bd;b^3+c^3+d^3\ne0\)
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2 : Cho a , b , c , d > 0 . CMR :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
cho 4 số a;b;c;d khác 0 và thỏa mãn: b2=a.c ; c2=b.d ; b3+c3+d3 khác 0
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
MÌNH CẦN GẤP MONG CÁC BẠN GIÚP CHO
NHẤT LÀ CÁC BẠN CTV MỚI
1/Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b\ne0;d\ne0\right)\)chứng tỏ rằng\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a.c}{b.d}\)
2/Tìm x, y thỏa mãn:\(\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
3/Tìm các số a, b, c biết \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\) và a - b =15
4/Chứng minh M=3x+1+3x+2+3x+3+ . . . +3x+100 chia hết cho 120(x ∈ N)
Giúp mình vs mình đg gấp. Trả lời 1 câu cx đc mình sẽ tick
Cho \(ac=b^2\); \(ad=c^2\). Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 1: Tìm x biết: \(\left|x-\frac{2}{3}\right|-\left|x-7\right|=\frac{5}{3}\)
Bìa 2: Cho \(\frac{a}{b}=\frac{c}{d}\) và b+d\(\ne0\) . Chứng minh rằng \(\frac{a^{2009}+c^{2009}}{b^{2009}+d^{2009}}=\frac{\left(a+c\right)^{2009}}{\left(b+d\right)^{2009}}\)