Cho Tam giác MAB vẽ Đường tròn tâm O đường kính AB ; cắt MA ở C và MB ở D. Kẻ AP vuông góc CD, BQ vuông góc CD. Gọi AD giao BC tại H. CM:
a) CP = DQ.
b) PD.DQ= PA.BQ và CQ.CP=PD.QD.
c) MH vuông góc AB.
Vẽ đường tròn tâm o đường kính AB =6 cm. vẽ đường tròn (A ;3 cm).2 đường tròn cắt nhău tại M và N
a, cho các góc của tam giác MAB, MOB
viết tên các cặp góc phụ nhau , bù nhau
cho đường tròn tâm O đường kính AB, MN vuông góc AB tại H, góc MAB =60 độ, CM: tam giác MNB đều và O là trọng tâm của nó
Vẽ đường tròn tâm O bán kính 2cm.
Vẽ đường tròn tâm O' bán kính 2cm.
Cắt đường tròn tâm O ở hai điểm AB sao cho OO'=4cm.Tính chu vi của tam giác AAO' ?
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.1: ΔOMN cân tại O
mà OA vuông góc MN
nên OA là trung trực của MN
=>AM=AN
góc AMB=góc ANB=1/2*sđ cung AB=90 độ
Xét ΔAMB vuông tại M và ΔANB vuông tại N có
AB chung
AM=AN
=>ΔAMB=ΔANB
=>BM=BN
=>AM,AN là tiếp tuyến của (B;BM)
2: MH^2=AH*HB
=>4*MH^2=4*AH*HB
=>MN^2=4*AH*HB
3: góc MBA=90-60=30 độ
=>góc MBN=60 độ
=>ΔMBN đều
Vẽ đường tròn tâm O đường kính AB=6cm.Vẽ đường tròn A(A;3cm) hai đường tròn cách nhau tại M và N
a,đo các góc của tam giác MAB,NOB
b,Nói tên các cặp góc phụ nhau,bù nhau
Dạng tổng quát của bất đẳng thức Cosi (Cauchy) và Bunhiacốpxki
áp dụng làm giúp mình 2 bài này với
Bài 1: Cho hai điểm A và B cố định và điểm M di động sao cho MAB là tam giác có 3 góc nhọn. Gọi H là trực tâm của tam giác MAB và K là chân đường cao vẽ từ M của tam giác MAB. Tìm max của KH.KM
Bài 2: Cho đường tròn cố định tâm O, bán kính bằng 1. Tam giác ABC luôn thay đổi và luôn ngoại tiếp với đường tròn O. Một đường thẳng đi qua tâm O cắt các đoạn AB,AC lần lượt tại M,N. Xác định min của diện tích tam giác AMN
x2>=0 Dấu "=" chỉ xảy ra khi x=0
-x2 =< 0 Dấu "=" chỉ xảy ra khi x=0
*) bđt Cô-si
cho a,b không âm ta có \(\frac{a+b}{2}\le\sqrt{ab}\)(*) dấu "=" xảy ra khi a=b
tổng quát: cho n số không âm a1;a2;....;an
ta có \(\frac{a_1+a_2+....+a_n}{n}\ge\sqrt[n]{a_1\cdot a_2......a_n}\)dấu "=" xảy ra khi a1=a2=....=an
*) bđt Bunhiacopxki
cho bốn số a,b,c,d ta luôn có (ab+cd)2 =< (a2+c2)(b2+d2) dấu "=" xảy ra <=> ad=bc
tổng quát cho 2n số a1,a2,...;an; b1,b2,....,bn
ta luôn có (a1b1+a2b2+....+anbn)2 =< (a12+a22+....+an2).(b12+....+bn2)
dấu "=" xảy ra \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=....=\frac{a_n}{b_n}\)
quy ước nếu mẫu bằng 0 thì tử bằng 0
(1) 2(a2+b2) >= (a+b)2 >= 4ab
(2) 3(a2+b2+c2) >= (a+b+c)2 >= 3(ab+bc+ca)
(3) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
(4) \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
gọi E là giao điểm của Ah và MB. xét tam giác KAH và tam giác KMB có
\(\widehat{AKH}=\widehat{MKB}\left(=90^0\right)\)
\(\widehat{KAM}=\widehat{KMB}\)(2 góc cùng phụ góc AMN)
do đó tam giác KAH ~ tam giác KMB => \(\frac{KH}{KB}=\frac{AK}{BM}\Rightarrow KH\cdot KM=AK\cdot AB\)
áp dụng bđt Cô-si cho 2 số dương ta có:
\(\sqrt{AK\cdot AB}\le\frac{AK+AB}{2}\Leftrightarrow AK\cdot AB\le\frac{AB^2}{4}\)
do đó \(KH\cdot KM\le\frac{AB^2}{4};\frac{AB^2}{4}\)không đổi. dấu "=" xảy ra <=> AK=AB
vậy giá trị lớn nhất của KH.KM là \(\frac{AB^2}{4}\)khi AK=AB
giả sử đường tròn (O) tiếp xúc AB, AC lần lượt tại H,K
SAMN=SOAM+SOAN=\(\frac{1}{2}OH\cdot AM+\frac{1}{2}OK\cdot AN=\frac{AM+AN}{2}\)
vẽ MI _|_ AB tại I ta có AM >= MI
áp dụng bất đẳng thức Cosi cho 2 số không âm, ta có \(\frac{AM+AN}{2}\ge\sqrt{AM\cdot AN}\)
do đó \(S_{AMN}\ge\sqrt{AM\cdot AN}\ge\sqrt{MI\cdot AN};S_{AMN}=\frac{1}{2}MI\cdot AN\Rightarrow MI\cdot AN=2S_{AMN}\)
vậy \(S_{AMN}\ge\sqrt{2S_{AMN}}\Leftrightarrow S^2_{AMN}\ge2S_{AMN}\Leftrightarrow S_{AMN}\ge2\)(do SAMN >0)
AM=AN=MI, tức là \(\widehat{BAC}=90^o\)và AM=AN thì SAMN=2
vậy giá trị nhỏ nhất của diện tích tam giác là 2
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đúng hog
a)Ta có: góc MFH=90(góc nội tiếp chắn nửa đường tròn)
góc MEH=90( ║ )
Xét tứ giác MEHF,ta có:
góc MFH=góc FME=góc MEH=90
⇒MEHF là hcn (tứ giác có 3 góc vuông)
b) Ta có góc MFE=góc MHE (cùng chắn cung ME)
mà góc MAB =góc MHE (cùng phụ góc HMA)
Suy ra: góc MBA=góc MFE
⇒tứ giác AEFB nội tiếp ( tứ giác có góc trong tại một đỉnh bằng góc ngoài tại đỉnh đối của đỉnh đó)
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
Cho đường tròn tâm O bán kính 3cm. Vẽ đường kính AB. Lấy A làm tâm vẽ đường tròn bán kính 5cm, nó cắt đường tròn tâm O tại C và D.
a) Chứng minh tam giác AOC= tam giác AOD.
b) Chứng minh AB là tia phân giác của tam giác CAD, OB là tia phân giác củả tam giác COD
Cho nửa đường tròn tâm O đường kính AB, lấy OA làm đường kính vẽ nửa đường tròn đường kính AB. Trên nửa đường tròn lấy C (C khác A;9), tia OC cắt nửa đường tròn tâm O tại D, kẻ BH vuông góc AB
CMR: a, tam giác AOC=tam giác DOH
b, AHCD là hình thang cân