Những câu hỏi liên quan
NN
Xem chi tiết
HT
Xem chi tiết
HT
12 tháng 11 2015 lúc 21:26

cứ làm đi 

tôi sẽ l i k e

Bình luận (0)
NH
Xem chi tiết
NC
Xem chi tiết
NT
22 tháng 7 2023 lúc 20:38

1: ΔOMN cân tại O 

mà OA vuông góc MN

nên OA là trung trực của MN

=>AM=AN

góc AMB=góc ANB=1/2*sđ cung AB=90 độ

Xét ΔAMB vuông tại M và ΔANB vuông tại N có

AB chung

AM=AN

=>ΔAMB=ΔANB

=>BM=BN

=>AM,AN là tiếp tuyến của (B;BM)

2: MH^2=AH*HB

=>4*MH^2=4*AH*HB

=>MN^2=4*AH*HB

3: góc MBA=90-60=30 độ

=>góc MBN=60 độ

=>ΔMBN đều

Bình luận (0)
TD
Xem chi tiết
DH
Xem chi tiết
TL
25 tháng 7 2020 lúc 7:10

x2>=0 Dấu "=" chỉ xảy ra khi x=0

-x2 =< 0 Dấu "=" chỉ xảy ra khi x=0

*) bđt Cô-si

cho a,b không âm ta có \(\frac{a+b}{2}\le\sqrt{ab}\)(*) dấu "=" xảy ra khi a=b

tổng quát: cho n số không âm a1;a2;....;an

ta có \(\frac{a_1+a_2+....+a_n}{n}\ge\sqrt[n]{a_1\cdot a_2......a_n}\)dấu "=" xảy ra khi a1=a2=....=an

*) bđt Bunhiacopxki

cho bốn số a,b,c,d ta luôn có (ab+cd)2 =< (a2+c2)(b2+d2) dấu "=" xảy ra <=> ad=bc

tổng quát cho 2n số a1,a2,...;an; b1,b2,....,bn

ta luôn có (a1b1+a2b2+....+anbn)2 =< (a12+a22+....+an2).(b12+....+bn2)

dấu "=" xảy ra \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=....=\frac{a_n}{b_n}\)

quy ước nếu mẫu bằng 0 thì tử bằng 0

(1) 2(a2+b2) >= (a+b)2 >= 4ab

(2) 3(a2+b2+c2) >= (a+b+c)2 >= 3(ab+bc+ca)

(3) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

(4) \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
25 tháng 7 2020 lúc 7:21

gọi E là giao điểm của Ah và MB. xét tam giác KAH và tam giác KMB có

 \(\widehat{AKH}=\widehat{MKB}\left(=90^0\right)\)

\(\widehat{KAM}=\widehat{KMB}\)(2 góc cùng phụ góc AMN)

do đó tam giác KAH ~ tam giác KMB => \(\frac{KH}{KB}=\frac{AK}{BM}\Rightarrow KH\cdot KM=AK\cdot AB\)

áp dụng bđt Cô-si cho 2 số dương ta có:

\(\sqrt{AK\cdot AB}\le\frac{AK+AB}{2}\Leftrightarrow AK\cdot AB\le\frac{AB^2}{4}\)

do đó \(KH\cdot KM\le\frac{AB^2}{4};\frac{AB^2}{4}\)không đổi. dấu "=" xảy ra <=> AK=AB

vậy giá trị lớn nhất của KH.KM là \(\frac{AB^2}{4}\)khi AK=AB

Bình luận (0)
 Khách vãng lai đã xóa
TL
25 tháng 7 2020 lúc 7:25

giả sử đường tròn (O) tiếp xúc AB, AC lần lượt tại H,K

SAMN=SOAM+SOAN=\(\frac{1}{2}OH\cdot AM+\frac{1}{2}OK\cdot AN=\frac{AM+AN}{2}\)

vẽ MI _|_ AB tại I ta có AM >= MI

áp dụng bất đẳng thức Cosi cho 2 số không âm, ta có \(\frac{AM+AN}{2}\ge\sqrt{AM\cdot AN}\)

do đó \(S_{AMN}\ge\sqrt{AM\cdot AN}\ge\sqrt{MI\cdot AN};S_{AMN}=\frac{1}{2}MI\cdot AN\Rightarrow MI\cdot AN=2S_{AMN}\)

vậy \(S_{AMN}\ge\sqrt{2S_{AMN}}\Leftrightarrow S^2_{AMN}\ge2S_{AMN}\Leftrightarrow S_{AMN}\ge2\)(do SAMN >0)

AM=AN=MI, tức là \(\widehat{BAC}=90^o\)và AM=AN thì SAMN=2

vậy giá trị nhỏ nhất của diện tích tam giác là 2

Bình luận (0)
 Khách vãng lai đã xóa
AT
Xem chi tiết
DN
5 tháng 3 2022 lúc 15:01

đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng

đúng hog

Bình luận (2)
DN
5 tháng 3 2022 lúc 15:10

a)Ta có: góc MFH=90(góc nội tiếp chắn nửa đường tròn)

          góc MEH=90( ║ )

Xét tứ giác MEHF,ta có:

góc MFH=góc FME=góc MEH=90

⇒MEHF là hcn (tứ giác có 3 góc vuông)

b) Ta có góc MFE=góc MHE (cùng chắn cung ME)

        mà góc MAB =góc MHE (cùng phụ góc HMA)

Suy ra: góc MBA=góc MFE

⇒tứ giác AEFB nội tiếp ( tứ giác có góc trong tại một đỉnh bằng góc ngoài tại đỉnh đối của đỉnh đó)

Bình luận (2)
VT
Xem chi tiết
NT
Xem chi tiết
PD
Xem chi tiết