Cho a,b,c,d là 4 số khác nhau, khác không thoả mãn điều kiện : b^2 = ac; c^2 = bd và b^3+c^3+d^3 không bằng 0
CM : (a^3+b^3+c^3)/(b^3+c^3+d^3) = a/d
cho ab,bc (c khác 0) là các số có 2 chữ số thoả mãn điều kiện ab/a+b=bc/b+c. Chứng minh rằng b^2=ac
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
<=> \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
<=> \(\frac{9a}{a+b}=\frac{9b}{b+c}\)
<=> \(\frac{a}{a+b}=\frac{b}{b+c}\)
=> a(b + c) = b(a + b)
<=> ab + ac = ba + b2
=> ac = b2 (đpcm)
cho các số a,b,c là các số thực khác không thoả mãn điều kiện 1/a+1/2b+1/c=0. Tính giá trị M=2bc/a^2+ca/4b^2+2ab/c^2
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{2b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\)
\(M=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3}{xyz}=\dfrac{-z^3-3xy\left(-z\right)+z^3}{xyz}\)
\(=\dfrac{3xyz}{xyz}=3\)
Hãy thiết lập các số có 3 chữ số khác nhau từ 4 chữ số 0, 4, 5, 9 thoả mãn điều kiện
a, Chia hết cho 2
b, Chia hết cho 4
c, Chia hết cho 2 và 5
a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là
540; 504 940; 904 450; 954 950; 594 490 590
b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là :
540; 504; 940; 904
c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là
540; 450;490
940; 950; 590 .
Hãy thiết lập các số có 3 chữ số khác nhau từ 4 chữ số 0, 4, 5, 9 thoả mãn điều kiện
a, Chia hết cho 2
b, Chia hết cho 4
c, Chia hết cho 2 và 5
a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là
540; 504
940; 904
450; 954
950; 594
490
590
b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là:
540; 504; 940; 904
c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là
540; 450; 490
940; 950; 590.
Hãy thiết lập các số có 3 chữ số khác nhau từ 4 chữ số 0, 4, 5, 9 thoả mãn điều kiện
a, Chia hết cho 2
b, Chia hết cho 4
c, Chia hết cho 2 và 5
a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là
540; 504 940; 904 450; 954 950; 594 490 590
b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là : 540; 504; 940; 904
c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là 540; 450;490
940; 950; 590 .
Hãy thiết lập các số có 3 chữ số khác nhau từ 4 chữ số 0, 4, 5, 9 thoả mãn điều kiện
a, Chia hết cho 2
b, Chia hết cho 4
c, Chia hết cho 2 và 5
a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là
540; 504 940; 904 450; 954 950; 594 490 590
b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là : 540; 504; 940; 904
c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là 540; 450;490
940; 950; 590 .
Cho a,b,,d là các số tự nhiên đối một khác nhau thỏa mãn điều kiện
\(\dfrac{a}{a+b}\)+\(\dfrac{b}{b+c}\)+\(\dfrac{c}{c+d}\)+\(\dfrac{d}{d+a}\)=\(2\)
Chứng minh rằng ac=bd
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
\(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>b(c+d)(d+a)+d(a+b)(b+c)=0 (vì c≠a)
<=>abc-acd+bd2-b2d=0
<=> (b-d)(ac-bd)=0 <=> ac - bd =0 (vì b≠d) <=> ac = bd
Vậy abcd =(ac)(bd)=(ac)2
Bài 1:
Hãy thiết lập các số có 3 chữ số khác nhau từ 4 chữ số 0, 4, 5, 9 thoả mãn điều kiện
a, Chia hết cho 2
b, Chia hết cho 4
c, Chia hết cho 2 và 5
a) chia hết cho 2: 450 ; 490 ; 540 ; 590 ; 504 ; 904 ; 940 ; 950 ; 954 ; 594
b) chia hết cho 4: 904 ; 940 ; 504 ; 540
c) chia hết cho 2 và 5: 450 ; 540 ; 950 ; 940
ok mk nha!!!!! 565876978978345235355456457567658798712423423534645654756
a) chia hết cho 2: 450;490;540;504;904;940;954;594
b) chia hết co 4: 904;940;504;540
c) chia hết cho 2 và 5: 450;540;950;940
chia hết cho 2:450,490,540,590,504,904,940,950,594,954
chia hết cho 4:904,940,504,540
chia hết cho 2 và 5:950,940,540,450,590,490
tìm 3 số a,b,c khác nhau và khác 0 thoả mãn điều kiện a/(b+c)=b/(a+c)=c/(a+b).
tính giá trị biểu thức : B=(b+c)/a+(a+c)/b+(a+b)/c