Tìm GTNN vafd GTLN của biểu thức B= x+y+z; biết x, y, z là các số thực thỏa mãn điều kiện y2 + yz + z2 = 2 -\(\frac{3x^2}{2}\)
Cho x,y thuộc Z :
a/ Với giá trị nào của x thì biểu thức của A=2006-|x+5|có GTLN?Tìm GTLN đó?
b/Với giá trị nào của y thì biểu thức của B=|y-3|-9 có GTNN ?Tìm GTNN đó?
c/Tìm GTNN của biểu thức C=|x-100|+|y+200|-1?
GTNN là gì z.tui ko hiểu nên ko giải được!
GTNN là giá trị nhỏ nhất
Cho x,y thuộc Z:
a)Với giá trị nào của x thì biểu thức A=1000- |x+5| có GTLN;tìm GTLN đó.
b)Với giá trị nào của y thì biểu thức B=|y-3|+50 có GTNN;tìm GTNN đó.
c)Với giá trị nào của x và y thì biểu thức C=|x-100| +|y+200| -1 có GTNN;tìm GTNN đó.
a> Cho x + y + z = 3. Tìm GTLN của biểu thức x*y + y*z + z*x
b> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
cho \(x,y,z\ge0\) thỏa mãn \(x+y+z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2+y^2+z^2\)
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$
Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$
--------------
Tìm max:
$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$
Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$
$\Rightarrow A=36-2(xy+yz+xz)\leq 36$
Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.
Cho x , y ∈ ℤ
a) Với giá trị nào của x thì biểu thức A = 1000 − x + 5 có GTLN; Tìm GTLN đó.
b) Với giá trị nào của y thì biểu thức B = y − 3 + 50 có GTNN. Tìm GTNN đó.
c) Với giá trị nào của x, y thì biểu thức C = x − 100 + y + 200 − 1
có GTNN. Tìm GTNN đó
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
dhgxkkkkkkkkkkkkkkkkkkkkk
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
Tìm GTNN của biểu thức:
A= | x-2 | + | y + 5 | - 10 với x,y thuộc Z
B= ( x - 8 )^2 + 2005
Tìm GTLN của biểu thức:
C= - ( x - 5 )^2 + 9
Cho các số thức x,y,z thỏa mãn 2(y^2+yz+z^2)+3x^2=36.Tìm GTLN và GTNN của biểu thức A=x+y+z