Những câu hỏi liên quan
Xem chi tiết
H24
27 tháng 12 2018 lúc 17:32

Ta có : \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

\(\Leftrightarrow ca+cb=2ab\)

\(\Leftrightarrow ac-ab=ab-bc\)

\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Leftrightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

Bình luận (0)
NV
Xem chi tiết
NH
19 tháng 2 2017 lúc 22:49

1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)

CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)

Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Thay vào biểu thwusc M ta được M=3abc (ĐPCM)

2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó

Nếu không thấy thì em có thể quy đồng lên mà rút gọn

Bình luận (0)
NV
20 tháng 2 2017 lúc 6:50

vâng e cảm ơn anh 

Bình luận (0)
H24
Xem chi tiết
PD
18 tháng 12 2016 lúc 21:17

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,c+b=-a,a+c=-b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)

Xét a+b+c\(\ne0\)

\(\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=8\)

 

Bình luận (0)
NT
18 tháng 12 2016 lúc 21:30

Giải:
+) Xét a + b + c = 0

\(\Rightarrow-a=b+c\)

\(\Rightarrow-b=a+c\)

\(\Rightarrow-c=a+b\)

Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{-c}{c}=\frac{-a}{a}=\frac{-b}{b}=-1\)

Lại có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=-1\)

+) Xét \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Ta có:

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)

Vậy M = -1 hoặc M = 8

Bình luận (0)
NN
Xem chi tiết
DL
Xem chi tiết
WN
Xem chi tiết
VD
11 tháng 2 2018 lúc 19:31

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

Bình luận (0)
HN
Xem chi tiết
LD
Xem chi tiết
SH
29 tháng 12 2016 lúc 20:50

Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2}\left(\frac{b+a}{2ab}\right)\)

\(\frac{1}{c}=\frac{b+a}{2ab}\)

suy ra \(2ab=c\left(b+a\right)\)

\(2ab=cb+ca\)

suy ra \(ab+ab=cb+ca\)

suy a \(ab-cb=ca-ab\)

suy ra \(b\left(a-c\right)=a\left(c-b\right)\)

suy ra \(\frac{a}{b}=\frac{a-c}{c-b}\left(Đpcm\right)\)

Bình luận (0)
HH
3 tháng 1 2017 lúc 20:27

chua hieu may

Bình luận (0)
HH
15 tháng 12 2017 lúc 20:11

Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2}\left(\frac{b+a}{2ab}\right)\)

\(\frac{1}{c}=\frac{b+a}{2ab}\)

\(\Rightarrow2ab=c\left(b+a\right)\)

\(2ab=cb+ca\)

\(\Rightarrow ab+ab=cb+ca\)

\(\Rightarrow ab-cd=ca-ab\)

\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

Bình luận (0)
DH
Xem chi tiết
DH
28 tháng 4 2017 lúc 20:31

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)

\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

\(\Leftrightarrow2ab=c\left(a+b\right)\)

\(\Leftrightarrow ab+ab=ac+cb\)

\(\Leftrightarrow ab-cb=ac-ab\)

\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\) (đpcm)

Bình luận (0)
NT
Xem chi tiết