Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TT
Xem chi tiết
H24
5 tháng 6 2021 lúc 22:42

Xin lỗi nhé!

Áp dụng BĐT ta có:
`a^2+9>=6a`
`b^2+25>=10b`
`c^2+4>=4a`
`=>a^2+b^2+c^2+38>=6a+10b+4c`
`<=>76>=6a+10b+4c(1)`
Ta có:
`6a+10b+4c`
`=6(a+b)+4(b+c)`
`=48+4(b+c)>=48+4.7=76(2)`
`(1)(2)=>6a+10b+4c=76`
`<=>a=3,b=5,c=2`

Bình luận (0)
NL
5 tháng 6 2021 lúc 22:43

Do \(a^2+b^2+c^2=38\Rightarrow\left|b\right|\le\sqrt{38}< 7\)

\(\Rightarrow c\ge7-b>0\)

\(\Rightarrow c^2\ge\left(7-b\right)^2\)

Do đó:

\(38=\left(8-b\right)^2+b^2+c^2\ge\left(8-b\right)^2+b^2+\left(7-b\right)^2\)

\(\Leftrightarrow5\left(b-5\right)^2\le0\)

\(\Leftrightarrow b=5\Rightarrow a=3;c=2\)

Bình luận (1)
H24
5 tháng 6 2021 lúc 22:41

Áp dụng BĐT ta có:
`a^2+9>=6a`
`b^2+25>=10b`
`c^2+4>=4a
`=>a^2+b^2+c^2+38>=6a+10b+4c`
`<=>76>=6a+10b+4c(1)`
Ta có:
`6a+10b+4c`
`=6(a+b)+4(b+c)`
`=48+4(b+c)>=48+4.7=76(2)`
`(1)(2)=>6a+10b+4c=76`
`<=>a=3,b=5,c=2`

Bình luận (0)
VH
Xem chi tiết
NM
8 tháng 8 2019 lúc 21:18

chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*

Bình luận (0)
LN
9 tháng 3 2021 lúc 19:23
Tôi nghĩ Minh nói đúng đấy,bạn đủ thông minh để làm đấy
Bình luận (0)
 Khách vãng lai đã xóa
KH
9 tháng 3 2021 lúc 19:47

CŨNG ĐÚNG ĐẤY

Bình luận (0)
 Khách vãng lai đã xóa
AA
Xem chi tiết
DH
10 tháng 5 2022 lúc 1:42

Ta có: 

\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\)

\(=6\left(a+b+c\right)=18\)

Suy ra \(P\le3\sqrt{2}\)

Dấu \(=\) xảy ra khi \(a=b=c=1\). 

Bình luận (0)
E2
Xem chi tiết
HN
28 tháng 7 2016 lúc 8:42

Các sô thực dương là j vậy bạn

Bình luận (0)
NT
14 tháng 12 2019 lúc 22:03

các số thực dương là các số > 0 ( kể cả phân số , số thập phân , số vô tỉ )

Bình luận (0)
 Khách vãng lai đã xóa
TA
2 tháng 5 2020 lúc 0:10

ê mấy bọn ngu

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
H24
19 tháng 5 2021 lúc 20:18

Áp dụng BĐT bunhiacop ski dạng phân thức(cauchy schwart)

`=>A>=(a+b+c)^2/(a+b+b+c+a+c)`

`<=>A>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2`

Mà `a+b+c=6`

`=>A>=6/2=3`

Dấu "=" xảy ra khi `a=b=c=2`

Bình luận (2)
WH
19 tháng 5 2021 lúc 20:20

Câu hỏi của Thu Nguyễn - Toán lớp 9 - Học trực tuyến OLM

tham khảo ^^

Bình luận (3)
VT
Xem chi tiết
NQ
Xem chi tiết
NM
Xem chi tiết
NL
25 tháng 10 2021 lúc 10:38

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

Bình luận (1)
NL
25 tháng 10 2021 lúc 10:43

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

Bình luận (1)
H24
Xem chi tiết
H24
11 tháng 5 2021 lúc 23:08

Áp dụng BĐT cosi:
`a^2+25>=10a`
`b^2+9>=6b`
`c^2+4>=4c`
`=>a^2+b^2+c^2+38>=10a+6b+4c`
`<=>a^2+b^2+c^2+38>=4(a+b+c)+2(a+b)+4a`
`<=>a^2+b^2+c^2+38>=10.4+2.8+4.5=76`
`<=>a^2+b^2+c^2>=38(đpcm)`
Dấu "=" `<=>a=5,b=3,c=2`

Bình luận (1)
TN
Xem chi tiết
MH
16 tháng 9 2023 lúc 15:36

Ta có: \(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Rightarrow bc+ca=2ca\)

\(P=\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}=\dfrac{ac+bc}{2ca-bc}+\dfrac{ca+ab}{2ca-ab}\)

\(=\dfrac{ca+bc}{ab}+\dfrac{ca+ab}{bc}=\dfrac{c}{b}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{c+a}{b}+\dfrac{c}{a}+\dfrac{a}{c}\)

Ta có :

\(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\left(\text{Svácxơ}\right)\)\(\Rightarrow c+a\ge2b\)

Áp dụng bđt cô si cho 2 số dương

\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{c}{a}.\dfrac{a}{c}}=2\)

\(\Rightarrow P\ge\dfrac{2b}{b}+2=4\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)