Những câu hỏi liên quan
LA
Xem chi tiết
AH
23 tháng 4 2023 lúc 19:34

Lời giải:

a.

$2x-1=0$

$2x=1$

$x=\frac{1}{2}$

b.

$\frac{3}{4}x-5=0$

$\frac{3}{4}x=5$

$x=5:\frac{3}{4}=\frac{20}{3}$

c. $x^2-4=0$

$x^2=4=2^2=(-2)^2$

$\Rightarrow x=2$ hoặc $x=-2$

d.

$x^2+3x+2=0$

$x(x+1)+2(x+1)=0$

$(x+1)(x+2)=0$

$\Rightarrow x+1=0$ hoặc $x+2=0$

$\Rightarrow x=-1$ hoặc $x=-2$

e.

$x^2+3x-4=0$

$x(x-1)+4(x-1)=0$

$(x-1)(x+4)=0$

$\Rightarrow x-1=0$ hoặc $x+4=0$

$\Rightarrow x=1$ hoặc $x=-4$

Bình luận (0)
DA
Xem chi tiết
H9
3 tháng 8 2023 lúc 8:49

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)

c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)

\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)

\(\Rightarrow x\left(6x-2-15-6x\right)\)

\(\Rightarrow-16x=0\)

\(\Rightarrow x=0\)

d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)

\(\Rightarrow9x^2-4-4x+4=0\)

\(\Rightarrow9x^2-4x=0\)

\(\Rightarrow x\left(9x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)

Bình luận (1)
GD

\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)

Bình luận (0)
GD

\(c,2x\left(3x-1\right)-3x\left(5+2x\right)=0\\ \Leftrightarrow6x^2-2x-15x-6x^2=0\\ \Leftrightarrow-17x=0\\ \Leftrightarrow x=0\\ d,\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\\ \Leftrightarrow9x^2-4-4x+4=0\\ \Leftrightarrow9x^2-4x=0\\ \Leftrightarrow x\left(9x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)

Bình luận (0)
TL
Xem chi tiết
KR
6 tháng 7 2023 lúc 11:33

`@` `\text {Ans}`

`\downarrow`

`a,`

`P(x)+Q(x) = (3x^4-2x^3+3x+11)+(3x^2- x^3-5x+3x+4-x+2x^4)`

`= 3x^4-2x^3+3x+11+3x^2- x^3-5x+3x+4-x+2x^4`

`= (3x^4 + 2x^4) + (-2x^3 - x^3) + 3x^2 + (3x + 3x - 5x - x) + (11+4)`

`= 5x^4 - 3x^3 + 3x^2 + 15`

`b,`

` A(x) = P(x) + B(x)`

Thay `B(x) = 2x^3 - 3x^4 - 2`

`A(x) = P(x) + B (x)`

`=> A (x) = (2x^3 - 3x^4 - 2)+(3x^4 - 2x^3 + 3x + 11)`

`= 2x^3 - 3x^4 - 2+ 3x^4 - 2x^3 + 3x + 11`

`= (2x^3 - 2x^3) + (-3x^4 + 3x^4) + 3x + (-2+11) `

`= 3x + 9`

`A(x) = 3x+9 = 0`

`=> 3x = 0-9`

`=> 3x = -9`

`=> x = -9 \div 3`

`=> x = -3`

Vậy, nghiệm của đa thức là `x = -3.`

Bình luận (0)
TB
Xem chi tiết
H24
Xem chi tiết
LK
6 tháng 3 2018 lúc 21:55

Ta có: đa thức: \(C\left(x\right)=3x^2+12\)

Mà \(3x^2\ge0\)

Do đó: \(3x^2+12\ge12>0\)

Do đó da thức trên vô nghiệm

Bình luận (0)
TL
Xem chi tiết
KR
6 tháng 7 2023 lúc 11:20

`@` `\text {Ans}`

`\downarrow`

`a,`

`P(x)+Q(x) = (3x^4-2x^3+3x+11)+(3x^2- x^3-5x+3x+4-x+2x^4)`

`= 3x^4-2x^3+3x+11+3x^2- x^3-5x+3x+4-x+2x^4`

`= (3x^4 + 2x^4) + (-2x^3 - x^3) + 3x^2 + (3x + 3x - 5x - x) + (11+4)`

`= 5x^4 - 3x^3 + 3x^2 + 15`

`b,`

` A(x) = P(x) + B(x)`

`=> A(x) - B(x) = P(x)`

`=> A(x) - B(x) = 3x^4-2x^3+3x+11`

Bạn xem lại đề ;-;.

Bình luận (0)
TL
Xem chi tiết
H24
4 tháng 7 2023 lúc 15:39

\(a,P\left(x\right)+Q\left(x\right)=\left(3x^4-2x^3+3x+11\right)+\left(3x^2-x^3-5x+3x+4-x+2x^4\right)\\ =\left(3x^4-2x^3+3x+11\right)+\left(2x^4-x^3+3x^2-3x+4\right)\\ =3x^4-2x^3+3x+11+2x^4-x^3+3x^2-3x+4\\ =\left(3x^4+2x^4\right)+\left(-2x^3-x^3\right)+\left(3x-3x\right)+\left(11+4\right)\\ =5x^4-3x^3+15\)

`B(x)` đâu cậu nhỉ?

Bình luận (1)
NA
Xem chi tiết
TL
Xem chi tiết