Cho \(\Delta ABC\) . M là trung điểm BC ; N là trung điểm AC ; P là trung điểm AB.
CMR : nếu \(5.AM^2=BN^2+CP^2\) thì \(\Delta ABC\) vuông tại A
Cho \(\Delta ABC\), AB < AC, M là trung điểm của BC. Trên tia AM lấy điểm D sao cho M là trung điểm của AD.
a) Chứng minh: \(\Delta AMC\) = \(\Delta DMB\)
b) Chứng minh: \(\Delta AMB\) = \(\Delta DMC\)
c) Chứng minh: AB = CD và AB // CD
d) Chứng minh: AC = DB và AC // DB
e) Trên cạnh AC lấy điểm H và trên cạch BD lấy điểm K sao AH = DK. Chứng minh 3 điểm H, M, K thẳng hàng.
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
c: Ta có: ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
d: ta có: ΔAMC=ΔDMB
=>AC=DB
Ta có: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
e: Xét ΔKDM và ΔHAM có
KD=HA
\(\widehat{KDM}=\widehat{HAM}\)
DM=AM
Do đó: ΔKDM=ΔHAM
=>\(\widehat{KMD}=\widehat{HMA}\)
mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>H,M,K thẳng hàng
Cho \(\Delta\)ABC,M là trung điểm của AB,vẽ MN//AB tại N
a)C/m MNlaf đường trung bình của \(\Delta\)ABC
b)Tia phân giác góc A cắt BC tại I.Vẽ k sao cho n là trung điểm của của IK.tứ giác AICK là hình gì?
c)C/m IB.NC=IC.MB
cho \(\Delta\)ABC vuông tại A, đường cao AH.
a, CM: \(\Delta\)AHC đồng dạng \(\Delta\)BHA.
b, Cho AB = 15 cm, AC = 20 cm. Tính BC, AH.
c, Gọi M là trung điểm của BH, N là trung điểm AH. CMR: CN\(\perp\)AM.
cho \(\Delta ABC\) , trên tia đối AC lấy điểm D sao cho AD = AC , trên tia đối AB lấy E sao cho AE = AB nối D với E . C/m
a) \(\Delta ABC=\Delta AED\)
b) BC // DE
c) gọi M là trung điểm BC , N trung điểm DE c/m 3 điểm M , A , N thẳng hàng
Ta có hình vẽ:
a/ Xét tam giác ABC và tam giác AED có:
BA = AE (GT)
góc BAC = góc DAE (đối đỉnh)
CA = AD (GT)
=> tam giác ABC = tam giác AED (c.g.c)
b/ Ta có: tam giác ABC = tam giác AED (câu a)
=> góc DEA = góc ABC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> BC // DE (đpcm)
c/ Ta có: BC // DE (đã chứng minh trên)
=> góc DNA = góc AMC so le trong
=> đường MN qua A
hay NA trùng AM
hay N,A,M thẳng hàng
Cho \(\Delta\)ABC nhọn, trực tâm H. Gọi M là trung điểm BC, K là trung điểm đối xứng H qua M.
a, Tứ giác BHCK là hình gì? Vì sao?
b, CM \(\Delta\)ACK vuông.
c, \(\Delta\)ABC cần có thêm điều kiện gì để tứ giác BHCK là hình thoi?
a: Xét tứ giác BHCK có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo HK
Do đó: BHCK là hình bình hành
b: Ta có: BHCK là hình bình hành
nên BH//CK
mà BH\(\perp\)AC
nên CK\(\perp\)AC
hay ΔCAK vuông tại C
Cho \(\Delta ABC\) cân tại A, lấy điểm M là trung điểm của cạnh BC. Trên tia đối của MA lấy điểm D sao cho MA = MD
Chứng minh:
a) \(\Delta AMB\) và \(\Delta DMC\)
b) AC // BD
c) Kẻ AH \(\perp\) BC, DK \(\perp\) BC ( H, K \(\in\) BC ) Chứng minh BK = CH
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
Cho tam giác ABC và điểm M thuộc cạnh BC thỏa mãn \(\Delta AMB = \Delta AMC\)(Hình 32). Chứng minh rằng:
a) M là trung điểm của đoạn thẳng BC.
b) Tia AM là tia phân giác của góc BAC và \(AM \bot BC\).
a) Ta có:\(\Delta AMB = \Delta AMC\)nên AB = AC, MB = MC nên M là trung điểm của đoạn thẳng BC.
b) Ta có:\(\Delta AMB = \Delta AMC\)nên \(\widehat {AMB} = \widehat {AMC},\widehat {MAB} = \widehat {MAC},\widehat {MBA} = \widehat {MCA}\).
Vậy tia AM là tia phân giác của góc BAC vì \(\widehat {MAB} = \widehat {MAC}\).
Ta thấy:\(\widehat {AMB} = \widehat {AMC}\)mà ba điểm B, M, C thẳng hàng nên \(\widehat {BMC} = 180^\circ \).
\(\Rightarrow \widehat {AMB} = \widehat {AMC} = \dfrac{1}{2}.\widehat {BMC} = \dfrac{1}{2}.180^\circ = 90^\circ \). Vậy \(AM \bot BC\).
Cho \(\Delta ABC\) có M là trung điểm của AB. Đường thẳng qua M // BC cắt AC ở I , đường thẳng I // AB cắt BC ở K. CMR
a, AM = IK
b, \(\Delta AMI=\Delta IKC\)
c, AI = IC
a)Nối K với M .
Xét △BMK và △IMK có:
-MK:cạnh chung.
-^BKM=^IMK( 2 góc so le trong của IM // BC)
-^BMK=^MKI( 2 góc so le trong của AB // IK)
⇒ △BMK = △IMK (g.c.g)
⇒ BM=IK(cctư)
mà AM=BM(M là trung điểm của AB)
⇒AM=IK(ĐPCM).
b) Có ^AMI=^MIK( 2 góc so le trong của AB // IK).
Mà ^MIK=^IKC(2 góc so le trong của MI // BC).
⇒ ^AMI = ^IKC (1).
Xét △AMI và △IKC có:
-^AMI = ^IKC (chứng minh (1)).
-AM=IK(chứng minh câu a)).
-^MAI=^KIC( 2 góc đồng vị của AB // IK).
⇒△AMI=△IKC(g.c.g)(ĐPCM).
c)Từ câu b) , △AMI=△IKC.Suy ra: AI=IC (cctư).
Cho \(\Delta ABC\)có M, N, E lần lượt là trung điểm của AB, AC, BC. Chứng minh giao điểm 3 đường trung trực của \(\Delta ABC\)là trực tâm của \(\Delta MNE\).
Bài 1: Cho tam giác ABC vuông tại A có \(\widehat{ABC}=60^o\)
a) Tính số đo góc BCA.
b) Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Chứng minh \(\Delta ABD=\Delta EDB\)và \(DE\perp BC.\)
c) Trên tia BA lấy điểm M sao cho BM=BC. Ba điểm E,D,M có thẳng hàng hay không? Giair thích bằng câu trả lời của em.
Bài 2: Cho tam giác ABC, có N là trung điểm của AB. Trên tia đối của tia NC lấy điểm D sao cho ND=NC.
a) CMR:\(\Delta ACN=\Delta BDN.\)
b) CM: AD//BC
c) Gọi M là trung điểm của BC, gọi P là trung điểm của AD. Chứng minh 3 điểm M,N,P thằng hàng.