Những câu hỏi liên quan
NT
Xem chi tiết
HN
15 tháng 10 2016 lúc 11:48

A B C D F E M

Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a

=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)

=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ

=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF

Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)

Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)

Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)

\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)

Bình luận (0)
HP
15 tháng 10 2016 lúc 11:04

chiu

tk nhe

xin do

bye

Bình luận (0)
NG
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
NT
6 tháng 1 2023 lúc 8:06

a: Xét tứ giác BECF có

D là trung điểm chung của BC và EF

BE=EC

Do đó: BECF là hình thoi

b: Sửa đề: Tính diện tích BECF

\(BC=\sqrt{10^2-8^2}=6\left(cm\right)\)

DE=AB/2=4cm

=>EF=8cm

\(S_{BECF}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)

Bình luận (0)
TH
Xem chi tiết
NV
31 tháng 3 2016 lúc 20:23

bài của bạn gần giống bài của mình

Bình luận (0)
TH
13 tháng 11 2018 lúc 20:32

ghen j đồng bào

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 10 2018 lúc 16:54

Tìm ảnh của từng điểm qua phép đối xứng trục AC: điểm I biến thành I; B thành D; G thành H.

Chọn đáp án C

Bình luận (0)
ND
Xem chi tiết
NM
11 tháng 1 2022 lúc 15:44

A B C E F H I M G N P Q K

Gọi P là giao của BN với EH; Q là giao của MN với HF; K là giao của MN với EF

Ta có 

\(EH\perp BC;AI\perp BC\)=> EH//AI \(\Rightarrow\frac{PE}{NA}=\frac{PH}{NI}\) (Talet) \(\Rightarrow\frac{PE}{PH}=\frac{NA}{NI}=1\Rightarrow PE=PH\)

=> BN đi qua trung điểm P của EH

Ta có

EF//BC (gt) => KF//HM \(\Rightarrow\frac{QK}{QM}=\frac{QF}{QH}=\frac{KF}{HM}\) (Talet) => KH//FM

Xét tứ giác KFMH có 

KF//HM; KH//FM => KFMH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> KF=HM (Trong hình bình hành các cạnh đối bằng nhau)

\(\Rightarrow\frac{QF}{QH}=\frac{KF}{HM}=1\Rightarrow QF=QH\)

=> MN đi qua trung điểm Q của HF

Bình luận (0)
 Khách vãng lai đã xóa
DB
Xem chi tiết
PB
Xem chi tiết
CT
25 tháng 12 2017 lúc 13:51

Bình luận (0)
VV
Xem chi tiết