Những câu hỏi liên quan
NA
Xem chi tiết
TT
22 tháng 7 2018 lúc 9:26

A C B H E F t

Bình luận (0)
TT
22 tháng 7 2018 lúc 9:37

tg ABC vuông tại A nên: AC= căn(BC2 -AB2)= CĂN(10^2- 6^2) =8 cm

Có AH.BC= AB.AC

=> AH= (8.6)/10=4,8 cm

Có: AB2= BH.BC => BH=3,6 => CH=6,4

Bình luận (0)
TN
22 tháng 7 2018 lúc 10:18

a, Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC\) có \(\hat{BAC}=90^o\)\(AH\perp BC\) ta có:

\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)

Ta có: \(BH+HC=BC\Leftrightarrow3,6+HC=10\Leftrightarrow HC=6,4\left(cm\right)\)

\(\Delta ABC\) có \(\hat{BAC}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=BH.HC\Leftrightarrow AH^2=3,6.6,4\Leftrightarrow AH^2=23,04\left(cm\right)\Leftrightarrow AH=4,8\left(cm\right)\)(hệ thức về cạnh và đường cao trong tam giác vuông)

P/S: Ngoài ra bạn cũng có thể dùng định lý Py-ta-go vào \(\Delta ABH, \hat{AHB}=90^o\) để tính AH, hoặc dùng định lý Py-ta-go vào \(\Delta ABC, \hat{BAC}=90^o\) để tính AC sau đó dùng hệ thức về cạnh và đường cao trong tam giác vuông \(\left(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\right)\)vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\)  để tính AH.

b, Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông lần lượt vào \(\Delta AHB, \hat{AHB}=90^o, HE\perp AB, \Delta AHC, \hat{AHC}=90^o, HF\perp AC \) và \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:

\(AH^2=AE.AB\)(1)

\(AH^2=AF.AC\)(2)

\(AH^2=HB.HC\)(3)

Từ (1), (2), (3) \(\Rightarrow\)AE.AB = AF.AC = HB.HC

\(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\)

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 11 2023 lúc 14:36

Xét ΔCHA vuông tại H có HE là đường cao

nên \(EC\cdot EA=HE^2\)

=>\(EC\cdot EA=36\)

EA+EC=AC

=>EA+EC=9

EC*EA=36 và EA+EC=9

=>EA,EC là hai nghiệm của phương trình: \(x^2-9x+36=0\)(1)

\(\text{Δ}=\left(-9\right)^2-4\cdot1\cdot36=81-144=-63< 0\)

=>Phương trình (1) vô nghiệm

Do đó: BC không có số đo

Bình luận (0)
NA
Xem chi tiết
MT
22 tháng 7 2018 lúc 13:36

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

Bình luận (0)
KT
22 tháng 7 2018 lúc 20:37

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

Bình luận (0)
NT
Xem chi tiết
NH
Xem chi tiết
NT
11 tháng 11 2021 lúc 23:21

Câu 15:

a: ĐKXĐ: x>=0; x<>1

Bình luận (0)
DT
Xem chi tiết
NT
30 tháng 8 2021 lúc 14:54

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

Bình luận (0)
BC
Xem chi tiết
ST
Xem chi tiết
VT
Xem chi tiết