7. Cho tam giác ABC vuông tại A. Đường cao AH (H thuộc BC). Biết AH= 8cm; HC= 4cm. tính độ dài đoạn HB
Cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC) Biết AB=6cm,AC=8cm a c/m tam giác ABC đồng dạng tam giác HBA b Tính AH,BC
a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)
cho tam giác ABC vuông tại A , kẻ đường cao AH(H thuộc BC) biết HB=6cm, HC=8cm . Tính AH?
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH=6.8=48$
$\Rightarrow AH=\sqrt{48}=4\sqrt{3}$ (cm)
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC ) . Biết AB= 6cm, AC=8cm. Hãy tìm độ dài của cạnh BC,AH.
Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Áp dụng HTL:
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC) A. Chứng minh tam giác AHB đồng dạng với tam giác CAB B. Cho biết AB= 8cm, AC= 6cm. Tính độ dài AH, BH? C. Chứng minh AH²= HB.HC
(Tự vẽ hình)
a) Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)
b) Áp dụng định lý Pytago có:
\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)
Do \(\Delta AHB\sim\Delta CAB\Rightarrow\left\{{}\begin{matrix}\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\\\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)
c) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))
\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g) \(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=BH.CH\)
ai biết giải giúp minh với:
Câu 1:Cho tam giác ABC có 3 góc nhọn,các đường cao AD,BE,CK cắt nhau tại H.chứng minh
a,tứ giác HECD nội tiếp
b,Tia DA là tia phân giác góc EDK
Cây 2:cho tam giác ABC vuông tai A,biết ab=6cm,ac=8cm
A.tính bc
B,kẻ đường cao AH,tính Ah
Câu 3:Cho tam giác abc vuông tại A,BIẾT AC=4cm,Bc=5cm.
A,Tính cạnh AB
B,kẻ đường cao AH,TÍNH AH
Câu 4:Cho tam giác vuông ABC,vuông tại A(H thuộc BC).bIẾT AB=12CM,AC=5CM.tính BH,CH
Câu 5:cho tam giác ABC vuông tại A,đường cao AH(H THUỘC BC).biết BC=18cm,BH=6cm.Tính độ dài các cạnh AB,AC
Cau 6:Cho tam giác ABC,vuông tại A,biết AB=4cm,đường cao AH=2CM,tính các góc và các cạnh còn lại cua tam giac.?
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Cho tam giác ABC vuông tại A ; AB=6cm ; AC=8cm kẻ đường cao AH ,H thuộc BC và đường phân giác AD.
Chứng minh AH2 = BH.HB
tính:
BC,AH,HB,HC
c, Tính diện tích tam giác ADC
a) Sửa đề: \(AH^2=BH\cdot CH\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)(đpcm)
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Câu 3. Cho tam giác ABC vuông tại A có đường cao AH, biết AH = 4a, HB= 2a, với a là
số thực dương
1)Tính HC theo a
2)Tính tan ABC
Câu 4.
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB= 6cm, AC= 8cm.
1) Tính độ dài các đoạn thẳng BC, AH?
2) Từ H kẻ HM AB, HN AC . Tính diện tích tứ giác AMHN ( làm tròn 2 chữ số phần
thập phân).
cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC) Biết BC =5 cm,AB=3cm.Tính độ dài đường cao AH.
Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow AC=4\left(cm\right)\)
Áp dụng HTL ta có: \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\\ \Rightarrow AH=2,4\left(cm\right)\)
cho tam giác ABC vuông tại A đường cao AH (H thuộc BC) biết AB=4, AH=2. tính BC
Áp dụng hệ thức lượng vào tam giác ABC vuông tại A đường cao AH
=>\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
<=> \(\dfrac{1}{2^2}=\dfrac{1}{4^2}+\dfrac{1}{AC^2}\)Giải pt ta dc :
=> AC =\(\dfrac{4\sqrt{3}}{3}\)
Áp dụng định lý Pitago vào tam giác ABC vuông tại A
=> \(BC^2=AB^2+AC^2\)
Thay AB và AC vào rồi tính thì ta sẽ dc:
BC=\(\dfrac{8\sqrt{3}}{3}\)
Vậy BC = \(\dfrac{8\sqrt{3}}{3}\)