Những câu hỏi liên quan
H24
Xem chi tiết
NT
Xem chi tiết
OO
5 tháng 5 2016 lúc 9:09

cho hpt : $\int^{x-my=m}_{mx+y=1}$∫x−my=mmx+y=1a; tìm m để hpt có nghiệmb; tìm 1 hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc vào m

Bình luận (0)
OO
5 tháng 5 2016 lúc 9:13

I am bó tay.com.canh.vn!!!

543658

Bình luận (0)
DA
Xem chi tiết
H24
8 tháng 3 2020 lúc 20:42

1) Cho hệ phương trình:

{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)

a) Với m=1 ta có hệ phương trình:

{x+y=52x−y=−2{x+y=52x−y=−2

Cộng vế với vế ta được:

3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4

Vậy với  m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4

b) Nghiệm (x0,y0)(x0,y0) của  (I) thỏa mãn x0+y0=1x0+y0=1

nên ta có hệ phương trình:

⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)

Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43

Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11

Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.

2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my

Thay vào phương trình mx−2y=1mx−2y=1 ta được:

m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2

⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2

x=m+4m2+2x=m+4m2+2

Do m2+2>0m2+2>0 ∀m∀m

⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12

Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0

Bình luận (0)
 Khách vãng lai đã xóa

I don't know how to do this

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
HT
21 tháng 12 2015 lúc 21:10

TH1: nếu m=0 \(\Rightarrow x=\frac{\sqrt{2}}{2};y=\sqrt{2}\) vậy hệ có nghiệm duy nhất với m=0

TH2: nếu m \(\ne\) 0. để hệ có nghiệm duy nhất khi

\(\frac{2}{4}\ne\frac{1}{m^2}\) \(\Rightarrow\) m \(\ne+-\sqrt{2}\)

Đúng ko bạn? 

Bình luận (0)
OO
21 tháng 12 2015 lúc 13:42

???Nguyễn Nhật Minh

Bình luận (0)
PA
Xem chi tiết
HA
Xem chi tiết
AH
4 tháng 4 2018 lúc 0:17

Lời giải:

Khi \(m=-\sqrt{2}\). HPT tương đương:

\(\left\{\begin{matrix} (-\sqrt{2}+1)x-y=3\\ -\sqrt{2}x+y=-\sqrt{2}\end{matrix}\right.\)

Cộng theo vế: \(\Rightarrow (1-2\sqrt{2})x=3-\sqrt{2}\Rightarrow x=\frac{3-\sqrt{2}}{1-2\sqrt{2}}=\frac{1-5\sqrt{2}}{7}\)

\(\Rightarrow y=(m+1)x-3=\frac{(-\sqrt{2}+1)(1-5\sqrt{2})}{7}-3=-\frac{10+6\sqrt{2}}{7}\)

b)

\(\left\{\begin{matrix} (m+1)x-y=3\\ mx+y=m\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=(m+1)x-3\\ mx+y=3\end{matrix}\right.\)

\(\Rightarrow mx+[(m+1)x-3]=m\)

\(\Leftrightarrow x(2m+1)=m+3\)

Để hệ có bộ nghiệm duy nhất thì $x$ là duy nhất.

Với \(m=-\frac{1}{2}\Rightarrow x.0=\frac{5}{2}\) (vô lý, pt vô nghiệm)

Với \(m\neq -\frac{1}{2}\), pt có nghiệm duy nhất \(x=\frac{m+3}{2m+1}\)

\(\Rightarrow y=(m+1)x-3=\frac{m^2-2m}{2m+1}\)

Do đó: \(x+y=\frac{m^2-m+3}{2m+1}\)

Để \(x+y>0\Leftrightarrow \frac{m^2-m+3}{2m+1}>0\Leftrightarrow \frac{(m-\frac{1}{2})^2+\frac{11}{4}}{2m+1}>0\)

\(\Leftrightarrow 2m+1>0\Leftrightarrow m> \frac{-1}{2}\)

Vậy đk là \(m> \frac{-1}{2}\)

Bình luận (0)
DT
Xem chi tiết
NK
Xem chi tiết
NC
Xem chi tiết
KN
7 tháng 3 2020 lúc 10:06

a) m = 3 thì hệ trở thành \(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}6x+2y=6\left(1\right)\\6x-3y=21\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow5y=-15\Leftrightarrow y=-3\)

Từ đó suy ra \(x=2\)

Vậy với m = 3 thì hệ có 1 nghiệm (2;-3)

b) HPT không thể có nghiệm (3;1)

c) HPT có nghiệm (4;1) thì \(4m+1=3\Leftrightarrow m=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa