Những câu hỏi liên quan
SP
Xem chi tiết
NT
17 tháng 6 2022 lúc 13:04

\(E=\dfrac{7^{58}+7-5}{7^{57}+2}=7-\dfrac{5}{7^{57}+2}\)

\(F=\dfrac{7^{57}+2009\cdot7-2009\cdot6}{7^{56}+2009}=7-\dfrac{12054}{7^{56}+2009}\)

mà \(\dfrac{5}{7^{57}+2}>\dfrac{12054}{7^{56}+2009}\)

nên E<F

Bình luận (0)
VP
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
TK
Xem chi tiết
LH
27 tháng 3 2016 lúc 10:21

ai k mình mình k lại

Bình luận (0)
NM
Xem chi tiết
H24
Xem chi tiết
NH
22 tháng 3 2017 lúc 11:31

Ta có : ''Phần hơn'' của \(\frac{7^{58}+2}{7^{57}+2}\) là :

             \(\frac{7^{58}+2}{^{ }7^{57}+2}\) \(-\) 1 = \(\frac{7^{57}.6}{7^{57}+2}\)

             ''Phần hơn'' của \(\frac{5^{57}+2017}{5^{56}+2017}\) với 1 là :

             \(\frac{7^{57}+2017}{7^{56}+2017}\) \(-\) 1 = \(\frac{7^{56}.6}{7^{56}+2017}\)

           Ta có :\(\frac{7^{56}.6}{7^{56}+2017}\) = \(\frac{7^{56}.7.6}{\left(7^{56}+2017\right)7}\) = \(\frac{7^{57}.6}{7^{57}+14119}\)

         Ta thấy \(\frac{7^{57}.6}{7^{57}+2}\)> \(\frac{7^{57}.6}{7^{57}+14119}\)

         Suy ra \(\frac{7^{57}.6}{7^{57}+2}\) > \(\frac{7^{56}.6}{7^{56}+2017}\)

         Do đó \(\frac{7^{58}+2}{7^{57}+2}\) > \(\frac{7^{57}+2017}{7^{56}+2017}\)

Bình luận (0)