Cho hình thang vuông ABCD ( \(\widehat{A} = \widehat{D} = 90 ^0\) ) ; E là trung điểm của AD và \(\widehat{BEC} = 90^0\) . Cho biết ED = 2a . CMR :
a, AB . CD = \(a^2\)
b, \(\bigtriangleup{EAB}\) tia tia phân giác của \(\widehat{ABC}\)
Cho hình thang vuông ABCD (AB // CD) có \(\widehat{A}=\widehat{D}=90^0,\widehat{B}=60^0,CD=30cm,CA\perp CB\) . Tính diện tích của hình thang ABCD.
Trong hình thang vuông ABCD với các đáy là AD, BC có \(\widehat{A}=\widehat{B}=90^0;\widehat{ACD}=90^0;BC=4cm;AD=16cm\). Hãy tìm các góc C và D của hình thang ?
Hình thang vuông ABCD có \(\widehat{A}=\widehat{D}=90^0;AB=AD=2cm;DC=4cm\)
Tính các góc của hình thang ?
Kẻ BH ⊥ CD
Ta có: AD ⊥ CD (gt)
Suy ra: BH // AD
Hình thang ABHG có hai cạnh bên song song nên HD = AB và BH = AD
AB = AD = 2cm (gt)
⇒ BH = HD = 2cm
CH = CD – HD = 4 – 2 = 2 (cm)
Suy ra: ΔBHC vuông cân tại H ⇒ \(\widehat{C}=45^0\)
\(\widehat{B}+\widehat{C}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{B}=180^0-45^0=135^0\)
Cho hình thang vuông ABCD \(\left(\widehat{A}=\widehat{D}=90^0\right)\) , \(\widehat{C}=55^0\) , biết AB = 10cm, AD = 60cm. Tính CD.
cho hình thang vuông ABCD\(\left(\widehat{A}=\widehat{D}=90^0\right)\)có đáy nhỏ AB=5cm, đáy lớn CD =9cm; góc tạo bởi đáy lớn và cạnh bên là 45o. Tính chu chu vi hình thang vuông ABCD
Kẻ \(BH\perp CD\)
Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)
Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)
\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)
\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)
Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)
Chu vi hình thang vuông ABCD là:
\(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)
Chúc bạn học tốt.
Hình thang ABCD có \(\widehat{D}=\widehat{A}=90^0\); AB = 30cm; CD = 18cm; BC = 20cm
a. Tính \(\widehat{ABC};\widehat{BCD}\)
b. Tính \(\widehat{DAC};\widehat{ADB}\)
c. Tính BD, AC
CHO HÌNH THANG VUÔNG ABCD CÓ \(\widehat{A}=\widehat{D}=90^0\), ĐƯỜNG CHÉO BD VUÔNG GÓC VỚI CẠNH BC VÀ BD = BC
A> TÍNH CÁC GÓC CỦA HÌNH THANG
B> BIẾT AB = 3cm . TÍNH ĐỘ DÀI CÁC CẠNH BC , CD
Tính diện tích hình thang vuông có \(\widehat{A}=\widehat{D}=90^{0^{ }}\) ,AB = 2cm, CD = BC = 5cm ?
Kẻ BH⊥CD thì BH//AD, BH⊥AB
BH//AD và AB//HD nên ABHD là hbh
\(\Rightarrow AB=DH=2\left(cm\right);AD=BH\\ \Rightarrow CH=CD-DH=3\left(cm\right)\)
Pytago: \(AD^2=BH^2=BC^2-DH^2=16\left(cm\right)\)
\(\Rightarrow AD=4\left(cm\right)\\ \Rightarrow S_{ABCD}=\dfrac{1}{2}AD\left(AB+CD\right)=\dfrac{1}{2}\cdot4\cdot7=14\left(cm^2\right)\)
Cho hình thang vuông ABCD có \(\widehat{A}=\widehat{D}=90\) độ, AB = 11cm, AD = 12cm, BC = 13cm. Tính độ dài cạnh AC
Kẻ \(BH\perp CD\left(H\in CD\right)\)
Ta có: ABHD là hình chữ nhật => BH=AD=12 và DH=AB=11
Áp dụng định lí Pytago vào tam giác vuông BHC tại H có: \(HC=\sqrt{BC^2-BH^2}=\sqrt{13^2-12^2}=5\)
=> CD=DH+HC=11+5=16
Áp dụng định lí Pytago vào tam giác vuông ADC tại D có: \(AC=\sqrt{AD^2+CD^2}=\sqrt{12^2+16^2}=20\)
Vậy AC=20cm
Cho hình thang vuông ABCD có \(\widehat{A}=\widehat{D}=90^o\) và \(CD=BC=2.AB\). Tính \(\widehat{ABC}\)
bạn xem nhìn được không