Những câu hỏi liên quan
NR
Xem chi tiết
DH
Xem chi tiết
NH
Xem chi tiết

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bình luận (0)

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

Bình luận (0)

BẠN TỰ VẼ NHÉ 

Bài 3: Dựng tam giác đều BEI ( I,B cùng phía với AE)
Xét tam giác BAI và tam giác CAE:  

     BA=CA( Tam giác ABC vuông cân)

     BAI=EAC(=15)(BẠN KHÔNG HIỂU THÌ NÓI TRONG PHẦN CHAT MÌNH SẼ GIẢI THÍCH )

     AI=AE(Tam giac AIE đều)=> tam giac BAI=CAE=>BIA=CEA=150 độ VÀ BI=CE . Lại có CE=EA(do tam giac AEC cân vì có EAC=ECA=15) mà EA=EI( tam giac AEI đều )

Do đó BI=EI=> tam giác BIE cân tại I

Mà goc BIE=360-BIA-AIE hay BIE=360-150-60=150=> IEB=(180-150)/2=15

Đồng thời góc IEA =60( tam giac AIE đều) => BEA=60+15=75

                                       MK CỐ GẮNG LẮM !!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
DH
Xem chi tiết
2T
2 tháng 9 2019 lúc 20:19

a) \(\Delta ABC\)cân tại A có \(\widehat{B}=\widehat{C}\)nên \(\widehat{A}=180^0-2.40^0=100^0\)

Vẽ \(DE//BC\left(E\in AB\right)\)

Trên tia BC lấy điểm F sao cho BD = BF.

Vì BD là phân giác của \(\widehat{B}\)nên \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}=20^0\)

Vì \(DE//BC\)nên \(\widehat{EDB}=\widehat{DBC}\)(so le trong)

Mà \(\widehat{ABD}=\widehat{DBC}\)(Do BD là phân giác của \(\widehat{B}\))

Suy ra \(\widehat{EDB}=\widehat{ABD}\)\(\Rightarrow\Delta EBD\)tại E \(\Leftrightarrow EB=ED\)(1)

Vì \(DE//BC\)nên \(\hept{\begin{cases}\widehat{AED}=\widehat{B}\\\widehat{ADE}=\widehat{C}\end{cases}}\)(đồng vị)

Mà \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A) nên \(\widehat{AED}=\widehat{ADE}\)

\(\Rightarrow\Delta AED\)cân tại A \(\Rightarrow AE=AD\)

Lại có AB = AC (gt) nên EB = DC (2)

Từ (1) và (2) suy ra ED = DC

BD = BF(theo cách vẽ) nên \(\Delta BDF\)cân tại B có \(\widehat{DBF}=20^0\)

\(\Rightarrow\widehat{BDF}=\widehat{BFD}=\frac{180^0-20^0}{2}=80^0\)

Mà \(\widehat{DFB}+\widehat{DFC}=180^0\)(kề bù) nên ​\(\widehat{DFC}=180^0-80^0=100^0\)

​Áp dụng định lý về tổng ba góc trong tam giác vào tam giác FDC, có:

       \(\widehat{FDC}=180^0-100^0-40^0=40^0\)

Xét \(\Delta AED\)và \(\Delta FDC\)​có:

      \(\widehat{ADE}=\widehat{FCD}\left(=40^0\right)\)

      ED = DC( cmt)

      \(\widehat{AED}=\widehat{FDC}\left(=40^0\right)\)

Suy ra \(\Delta AED=\Delta FDC\left(g-c-g\right)\)

\(\Rightarrow AD=FC\)(hai cạnh tương ứng)

Lúc đó: \(BD+AD=BF+FC=BC\left(đpcm\right)\)

b) Vẽ tam giác đều AMG trên nửa mặt phẳng bờ AB chứa điểm C

Ta có: \(\widehat{GAC}=\widehat{BAC}-\widehat{BAG}=100^0-60^0=40^0\)

Bình luận (0)
ZZ
2 tháng 9 2019 lúc 20:53

Cách khác theo cô Huyền:3

Câu hỏi của thu - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
HD
20 tháng 3 2020 lúc 14:22

Tham khảo link này: https://olm.vn/hoi-dap/detail/84908086242.html

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
Xem chi tiết
DB
Xem chi tiết
PA
23 tháng 12 2016 lúc 8:31

a)

Xét tam giác AHB và tam giác DBH có:

AH = DB (gt)

AHB = DBH (= 900)

BH chung

=> Tam giác AHB = Tam giác DBH (c.g.c)

b)

DB _I_ BC (gt)

AH _I_ BC (gt)

=> DB // AH

c)

Tam giác HAB vuông tại H có:

HAB + HBA = 900

350 + HBA = 900

HBA = 900 - 350

HBA = 550

Tam giác ABC vuông tại A có:

ABC + ACB = 900

550 + ACB = 900

ACB = 900 - 550

ACB = 350

Bình luận (0)
TT
Xem chi tiết
TT
6 tháng 2 2021 lúc 16:53

hihihihi

Bình luận (0)
HY
Xem chi tiết