Những câu hỏi liên quan
QD
Xem chi tiết
PC
Xem chi tiết
NT
6 tháng 5 2015 lúc 21:25

s hình thang là

( 10 + 20) . 7.5 :2 = 112.5

b đợi một tí và cho **** đi

Bình luận (0)
TN
8 tháng 3 2017 lúc 20:23

a)Tính diện tích hình thang là:(10+20).7,5 :2=112,5

b)?(mình không biết làm)

Bình luận (0)
NT
10 tháng 8 2017 lúc 8:28

112,5.tk mk nha

Bình luận (0)
NN
Xem chi tiết
LB
Xem chi tiết
SX
Xem chi tiết
PN
7 tháng 3 2016 lúc 21:19

G A B M O N N' C D E F

Gọi  \(N\)  là trung điểm của đoạn thắng  \(AB\)  \(;\)  \(N'\)  là giao điểm của \(GM\)  và \(AB\)

Tứ giác  \(ABCD\)  là hình thang nên  \(AB\text{//}CD\)

Khi đó, 

\(\Delta GMD\)  có  \(AN'\text{//}MD\), nên \(\frac{AN'}{MD}=\frac{GN'}{GM}\) (hệ quả của định lý Ta-lét) \(\left(3\right)\)

\(\Delta GMC\)  có  \(N'B\text{//}MC\), nên \(\frac{N'B}{MC}=\frac{GN'}{GM}\)  \(\left(4\right)\)

\(\left(3\right);\)  \(\left(4\right)\)  \(\Rightarrow\)  \(\frac{AN'}{MD}=\frac{N'B}{MC}\)  \(\left(=\frac{GN'}{GM}\right)\)

Mà  \(MD=MC\)  \(\left(gt\right)\), do đó, \(AN'=N'B\)  hay  \(N'\)  phải trùng với  \(N\)

Tức là ba điểm \(G,\)  \(N,\)  \(M\)  thẳng hàng  \(\left(\text{*}\right)\)  

Tương tự, ta cũng chứng minh được ba điểm   \(N,\)  \(O,\)  \(M\)  thẳng hàng  \(\left(\text{**}\right)\)  

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra bốn điểm   \(G,\)  \(N,\)  \(O,\)  \(M\)  thẳng hàng

Vậy, đoạn thẳng \(GO\)  sẽ lần lượt đi qua  \(N\)  và  \(M\)  hay đi qua trung điểm của  \(AB\)  và  \(CD\)

Bình luận (0)
TN
6 tháng 3 2016 lúc 21:34

Đặt AB = m, MC = MD = n.

a) Do AB // CD, ta có :

\(\frac{MI}{TA}=\frac{MD}{AB}=\frac{n}{m}\)

\(\frac{MK}{KB}=\frac{MC}{AB}=\frac{n}{m}\)

Từ (1) và (2) suy ra \(\frac{MI}{IA}=\frac{MK}{KB}\) Từ đó theo định lí đảo của định lí Ta - lét đối với tam giác MAB, ta có IK // AB. ( nhưng lớp 8 chưa học ta -lét thì fai )

Bình luận (0)
PN
6 tháng 3 2016 lúc 22:09

A B C D M E F

Bình luận (0)
H24
Xem chi tiết
MY
14 tháng 6 2021 lúc 18:00

từ A hạ \(AE\perp DC\)

từ B hạ \(BF\perp DC\)

\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật

\(=>AB=EF=2cm\)

vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)

\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)

xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)

Bình luận (1)
LT
Xem chi tiết
VT
Xem chi tiết
SA
Xem chi tiết
PM
Xem chi tiết