Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TV
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
0V
Xem chi tiết
0V
5 tháng 6 2017 lúc 19:04

Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!

   Do a/b < c/d và b>0 ; d>0 suy ra ad< bc    ( 1)

  Cộng thêm ad vào 2 vế của ( 1) ta được:

ad + ad < bc + ad

 => a( b+d) < b ( a+ c )

=> a/b < a+c/b+c    ( 2)

Cộng thêm cd vào 2 vế của ( 2) ta được:

   ad + cd < bc + cd

=> ( a+ c) b < ( b+ d ) c

=> a+c/b+d < c/d     ( 3) 

Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y 

b)   Ta có: 

  -1/5 < -1/6 => -1/5 < -2/11 < -1/6 

-1/5 < -2/11 => -1/5 < - 3/16 < -2/11 

-1/5 < -3/16 => -1/5 < -4/21 < -3/16 

-1/5 < -4/21 => -1/5 < -4/21 < -3/16 

Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6 

Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3 

     

Bình luận (0)
8H
Xem chi tiết
AH
20 tháng 3 2022 lúc 17:08

Lời giải:
$a+b+c=abc$

$\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:

$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.

Ta có đpcm.

Bình luận (0)
GH
Xem chi tiết
LL
27 tháng 9 2021 lúc 11:20

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

Bình luận (0)
MG
Xem chi tiết
HF
9 tháng 10 2019 lúc 23:21

2Sử dụng t/c dãy tỉ số bằng nhau ta dễ dàng CM tất cả đều = 3

->a+b+2c = 4c -> a+b=2c

Tương tự -> b+c = 2a và a+c=2b

Thay vào M tính được M  = 8abc/abc = 8

Bình luận (0)
HF
9 tháng 10 2019 lúc 23:22

Mik sửa lại 1 chút, sd t/c dãy tỉ số bằng nhau cm được tất cả =4

Bình luận (0)