Những câu hỏi liên quan
NT
Xem chi tiết
NT
Xem chi tiết
KT
29 tháng 4 2018 lúc 20:50

Từ  D  kẻ  DH  vuông góc với AC   (H thuộc AC)

Xét  \(\Delta AHD\)và   \(\Delta AFC\:\)có:

    \(\widehat{AHD}=\widehat{AFC\:}=90^0\)

    \(\widehat{HAD}\) chung

suy ra:    \(\Delta AHD~\Delta AFC\:\)

\(\Rightarrow\)\(\frac{AH}{AF}=\frac{AD}{AC}\)

\(\Rightarrow\)\(AD.AF=AH.AC\)  (1)

Xét  \(\Delta AEC\) và     \(\Delta CHD\)  có:

\(\widehat{AEC}=\widehat{CHD}=90^0\)

\(\widehat{EAC}=\widehat{HCD}\) (slt do ABCD là hình bình hành nên AB//CD)

suy ra:   \(\Delta AEC~\Delta CHD\)

\(\Rightarrow\)\(\frac{AE}{CH}=\frac{AC}{CD}\)

\(\Rightarrow\)\(AE.CD=CH.AC\)

mà  \(CD=AB\) (do ABCD là hình bình hành)

\(\Rightarrow\)\(AB.AE=CH.AC\)

Lấy (1) + (2) theo vế ta được:

   \(AD.AF+AB.AE=AH.AC+HC.AC=AC^2\) (đpcm)

Bình luận (0)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

∠ (BGA) =  ∠ (CEA) =  90 0

∠ A chung

 △ BGA đồng dạng  △ CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét  △ BGC và  △ CFA, ta có:

∠ (BGC) =  ∠ (CFA) = 90 0

∠ (BCG) =  ∠ (CAF) (so le trong vì AD //BC)

△ BGC đồng dạng △ CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
TL
Xem chi tiết
NL
Xem chi tiết
NC
25 tháng 2 2019 lúc 9:32

Câu hỏi của Nguyễn Đình Kim Thanh - Toán lớp 8 - Học toán với OnlineMath

Em xem link bài làm nhé!

Bình luận (0)
TL
Xem chi tiết
TL
24 tháng 9 2021 lúc 14:27

đề là tam giác EOF hoặc DEF (tại vì mik viết nó giống nhau)

b) cho góc a=120 độ, tính EOF nữa

Bình luận (0)
NL
Xem chi tiết
H24
6 tháng 2 2022 lúc 11:03

undefinedundefined

Bình luận (1)
NQ
Xem chi tiết
NT
18 tháng 3 2023 lúc 14:01

a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có

góc IAB chung

=>ΔAIB đồng dạng vơi ΔAEC

b: ΔAIB đồng dạng với ΔAEC

=>AI/AE=AB/AC

=>AI/AB=AE/AC

=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC

c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có

góc FAC=góc ICB

=>ΔFAC đồng dạng với ΔICB

=>AF/IC=CA/CB

=>AF*CB=CA*IC

=>AB*AE+AF*CB=AC^2

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 7 2018 lúc 11:02

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

∠ (BGA) =  ∠ (CEA) =  90 0

∠ A chung

BGA đồng dạng CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét  △ BGC và  △ CFA, ta có:

∠ (BGC) =  ∠ (CFA) = 90 0

∠ (BCG) =  ∠ (CAF) (so le trong vì AD //BC)

△ BGC đồng dạng △ CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

AB.AE + AD.AF= AC(AG + CG)

Mà AG + CG = AC nên AB.AE + AD.AF =  A C 2

Bình luận (0)