Cho tam giác ABC, biết.
AB=10cm; BC=26cm;ac=24cm
a)C/m tam giác ABC vuông
b)Trên tia đối tia AB lấy D sao cho AB=AD.C/m CA là tia phân giác DCB
c)C/m tam giác CDB cân
cho tam giác ABC biết AB = 8cm , AC=10cm , BC=12cm . Trên tia đối của tia AB lấy điểm M sao cho AM=10cm
a, chứng minh rằng tam giác ABC đồng dạng với tam giác CBM . Tính CM
b, CMR CA là tia phân giác của góc BCM
c, Kẻ đường cao BE và CF của tam giác BCM . Gọi I là giao điểm của BE và CF .
CMR BE.BI + CI.CF=AB.BM
MN GIÚP MIK VS Ạ
a: Xét ΔABC và ΔCBM có
BA/BC=BC/BM
góc B chung
=>ΔABC đồg dạng với ΔCBM
=>AC/CM=BC/BM=2/3
=>10/CM=2/3
=>CM=15cm
b: ΔABC đồng dạng với ΔCBM
=>góc ACB=góc CMB
mà góc CMB=góc ACM
nên góc ACB=góc ACM
=>CA là phân giác của góc MCB
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Cho tam giác ABC có BC=10cm, AB=6cm và AC=8cm. Tam giác ABC là tam giác gì? vì sao?
Xét \(\Delta ABC:\)
\(BC^2=10^2=100.\\ AB^2+AC^2=6^2+8^2=100.\\ \Rightarrow BC^2=AB^2+AC^2.\)
\(\Rightarrow\Delta ABC\) vuông tại A (Pytago đảo).
Cho tam giác ABC có B=45°, C=30°, BC=10cm. Giải tam giác ABC
Tam giác ABC có: Sin B = \(\frac{AC}{BC}\) (hệ thức lượng) => AC = Sin B.BC = Sin 450 . 10 = \(5\sqrt{2}\) (cm)
Sin C = \(\frac{AB}{BC}\) (hệ thức lượng) => AB = Sin 300 . 10 = 5 (cm)
Ta có tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)
=> góc A = 1800 - 450 - 300 = 1050
Chúc bạn học tốt!
Cho tam giác ABC đều có độ dài 3 cạnh là 10cm, tính diện tích tam giác ABC
Áp dụng công thức Heron:
`p=(a+b+c)/2=(10+10+10)/2=15`
`=> S=\sqrt(p(p-a)(p-b)(p-c)) = \sqrt(15(15-10)^3) = 25\sqrt3`
cho tam giác ABC có AB=8CM ; AC=6CM và BC=10CM . Chứng minh rằng tam giác ABC là tam giác vuông tại A
Ta có:
\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)
\(BC^2=10^2=100\left(cm\right)\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)
Áp dụng định lý Pytago đảo ta có:
AB2+AC2=82+62=100
mà 102=100
⇒82+62=102hay AB2+AC2=BC2
vậy ABC là tam giác vuông tại A
áp dụng định lý pitago ta có :
ab^2+ac^2=8^2+6^2=100=10^2
=>bc=10cm
=>tam giác abc vuông tại a
Cho tam giác ABC có AB = 6cm, AC = 10cm, BC = 8cm .
a) So sánh các góc của tam giác ABC
b) Tam giác ABC là tam giác gì? vì sao?
a: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
b: XétΔABC có \(AC^2=BA^2+BC^2\)
nên ΔABC vuông tại B
a, Ta có AC > BC > AB
=> ^B > ^A > ^C
b, Ta có \(AC^2=AB^2+BC^2\Leftrightarrow100=64+36\)*đúng*
Vậy tam giác ABC vuông tại B
a) B>A>C|b)tâm giác ABC là tam giác vuông cân
cho tam giác ABC có AB=AC=BC.Gọi G là trọng tâm của tam giác ABC.cho biết GA=10cm tính diện tích tam giác ABC
giúp mik vs mấy bn ko cần kẻ hình đâu
cho tam giác ABC có AB=10cm,AC=17cm,BC=15cm, tính diện tích tam giác ABC