Cho tam giác ABC can tại A vẽ BH vuông góc với AC ( H thuộc AC ). Biết AB=AC=15 cm; BC=10 cm. Tính AH
Cho tam giác ABC có AB=AC. Vẽ BH vuông góc AC ( H thuộc AC). Trên BC lấy M, vẽ MD vuông góc AB; ME vuông góc AC; MF vuông góc BH.
a)CM ME = FH
b)CM tam giác DBM= tam giác FMB
c)CM MD+ME=BH
Cho tam giác ABC cân tại A. Điểm M thuộc cạnh BC. Kẻ MD vuông góc với AB (D thuộc AB). Kẻ ME vuông góc với AC (E thuộc AC). Kẻ BH vuông góc với AC (H thuộc AC). CM: MD + MẸ = BH
Cho tam giác ABC, có AB = AC ( góc A < 90 độ ). Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K ( H thuộc AC, K thuộc AB ). a) chứng minh AH = AK. b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tam giác IBK = tam giác ICH. c) chứng minh AI là phân giác của góc A. d) Gọi M là trung điểm của BC. Chứng minh ba điểm A,I,M thẳng hàng.
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
b: Ta có: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{KBI}=\widehat{HCI}\)
Ta có: AK+KB=AB
AH+HC=AC
mà AK=AH và AB=AC
nên KB=HC
Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
KB=HC
\(\widehat{KBI}=\widehat{HCI}\)
Do đó: ΔIKB=ΔIHC
c: ta có: ΔIKB=ΔIHC
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
Cho tam giác ABC, có AB = AC ( góc A < 90 độ ). Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K ( H thuộc AC, K thuộc AB ). a) chứng minh AH = AK. b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tam giác IBK = tam giác ICH. c) chứng minh AI là phân giác của góc A. d) Gọi M là trung điểm của BC. Chứng minh ba điểm A,I,M thẳng hàng.
Cho tam giác abc cân tại b . Kẻ bh vuông góc ac (h thuộc ac) Cm a) tam giác abc = tam giác cbh b) cho bh = 4 cm, ac = 6 cm . Tính bc =? c) kẻ he vuông góc ab, hf vuông góc bc . Cm be= bf
Cho tam giác ABC cân tại A,vẽ BH vuông góc với AC (H thuộc AC). Tính AH, biết AB=15cm,BC=10cm.
Cái đề sai sai rồi...đấy ạ...?!!!
cho tam giác ABC cân tại A , M thuộc BC , MD vuông góc với AB (D thuộc BC ) ,ME vuông góc với AC (E thuộc AC), BH vuông góc với AC (H thuộc AC).CM AH=AK
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại I. Vẽ IH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của IH và AB
a. CM IA=IH
b. Cm tam giác IKC cân
c. Cho BH=6cm, HC=4 cm. Tính AB và AC
a: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó: ΔBAI=ΔBHI
Suy ra: IA=IH
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó: ΔAIK=ΔHIC
Suy ra: IK=IC
hay ΔIKC cân tại I
c. ta có BH = AB ( cmt ) => AB = 6cm
áp dụng định lí pitago ta có
\(BC^2=AB^2+AC^2\)
\(10^2-6^2=AC^2\)
AC=\(\sqrt{64}=8cm\)