H24

Cho tam giác ABC, có AB = AC ( góc A < 90 độ ). Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K ( H thuộc AC, K thuộc AB ). a) chứng minh AH = AK. b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tam giác IBK = tam giác ICH. c) chứng minh AI là phân giác của góc A. d) Gọi M là trung điểm của BC. Chứng minh ba điểm A,I,M thẳng hàng.

NT
22 tháng 12 2023 lúc 17:56

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

b: Ta có: ΔAHB=ΔAKC

=>\(\widehat{ABH}=\widehat{ACK}\)

=>\(\widehat{KBI}=\widehat{HCI}\)

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔIKB vuông tại K và ΔIHC vuông tại H có

KB=HC

\(\widehat{KBI}=\widehat{HCI}\)

Do đó: ΔIKB=ΔIHC

c: ta có: ΔIKB=ΔIHC

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
M8
Xem chi tiết
H24
Xem chi tiết
DC
Xem chi tiết
TH
Xem chi tiết
AB
Xem chi tiết
HQ
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết