Cho hai số A = (2018^2017 + 2017^2017)^2018 ; B = (2018^2018 + 2017^2018)^2017. so sánh A và B
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
45612223698++56456+89575637259415767549846574257
So sánh hai phân số
A=2017/2018+2018/2019+2019/2020 và B=(2017+2018+2019)/(2018+2019+2020)
Cho hai số a, b dương thỏa mãn:\(a^{2016}+b^{2016}=a^{2017}+b^{2017}=a^{2018}+b^{2018}\)
Tính giá trị biểu thức: \(a^{2017}+b^{2017}\)
Cho các phân số 2017/2017, 2017/2018, 18/17, 2018/2017. Phân số lớn nhất là :
Dễ thấy \(\dfrac{2017}{2017}=1;\dfrac{2017}{2018}< 1;\dfrac{18}{17}>1;\dfrac{2018}{2017}>1\)
Vậy cần so sánh \(\dfrac{18}{17}=1+\dfrac{1}{17}\) và \(\dfrac{2018}{2017}=1+\dfrac{1}{2017}\)
Mà \(17< 2017\Rightarrow\dfrac{1}{17}>\dfrac{1}{2017}\)
\(\Rightarrow\dfrac{18}{17}>\dfrac{2018}{2017}\)
Vậy phân số lớn nhất là \(\dfrac{18}{17}\)
so sánh hai phân số A=2015/2016+2016/2017+2017/2018 và 2015+2016+2016/2016+2017+2018
Tinh nhanh:
2017 2017 2017 x 2018 2018 2018 2018 /2018 2018 2018 x 2017 2017 2017 2017
Cho A = 2017 mũ 2018 + 1 phần 2017 mũ 2018 - 3 và b bằng 2017 mũ 2018 - 1 phần 2017 mũ 2018 - 5 hãy so sánh a và b
\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)
Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)
Mà\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)và\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)
Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)
Vậy A>B
Cho hai số a,b thỏa mãn a2016 + b2016 = a2017 + b2017 = a 2018 + b2018.
Tính giá trị biểu thức P = a2017 + b2017 + (a-b)2017
So sánh hai phân số : A=\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)và B=\(\frac{2015+2016+2017}{2016+2017+2018}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Ta có:
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Cộng vế theo vế, ta có:
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Vậy A > B