Vẽ hình sau: Cho ΔADE. Gọi B; C lần lượt là trung điểm AD; AE. Trên tia DC lấy điểm M sao cho CM = CD. Trên tia EB lấy điểm N sao cho BE = BN. Chứng minh:
a) AM // DE.
b) M; A; N thẳng hàng.
c) A là trung điểm đoạn MN.
cho hình vẽ chứng minh rằng
a/ ΔADE = ΔBDE
b/ góc ADE = góc DBE
a: Xét ΔADE và ΔBDE có
DA=DB
DE chung
AE=BE
Do đó: ΔADE=ΔBDE
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho D E D H = C K C B . Chứng minh:
a) Δ A D E ∽ Δ A C K ;
b) Δ A E K ∽ Δ A D C ;
c) A E K ^ = 90 0
cho ΔABC ⊥ tại A đường cao AH , biết BC = 20 cm AH = 8 cm , lấy E và D là hình chiếu của H trên AB và AC
a, ADHE là hình gì ? chứng minh .
b. chứng minh ΔADE đồng dạng với ΔABC
c, tính diện tích ΔADE
a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đường cao
nên AE*AC=AH^2=AD*AB
=>AE/AB=AD/AC
=>ΔAED đồng dạng với ΔABC
c: ΔAED đồng dạng với ΔABC
=>\(\dfrac{S_{AED}}{S_{ABC}}=\left(\dfrac{ED}{BC}\right)^2=\dfrac{4}{25}\)
=>\(S_{AED}=\dfrac{4}{25}\cdot80=\dfrac{320}{25}=12.8\left(cm^2\right)\)
Cho tam giác nhọn ABC, vẽ các đường cao BD, CE.
a) Chứng minh rằng: ΔADB ~ ΔAEC và AE.AB = AD.AC.
b) Chứng minh rằng: ΔADE ~ ΔABC và .
c) Vẽ EF vuông góc với AC tại F. Chứng minh rằng: AE.DF = AF.BE.
d) Gọi M, N lần lượt là trung điểm của các đoạn thẳng BD, CE.
Cho hình 72, chứng minh rằng
ΔADE = ΔBDE
ΔADE và ΔBDE có:
DE cạnh chung
AD = BD (gt)
AE = BE (gt)
Vậy ΔADE = ΔBDE (c.c.c)
Cho ΔABC vuông tại A, BD là tia phân giác của góc ABC. Qua C kẻ đường thẳng vuông góc với tia BD tại E. Chứng minh rằng:
a)ΔADB ∼ ΔEDC
b)ΔADE ∼ ΔBDC
✳ Vẽ hình, viết Giả thiết, kết luận.
(hình tự vẽ,gt kl tự viết).
a) xét \(\Delta ADB\) và \(\Delta EDC\) có:
góc BAD = góc CED(=90 độ)
góc BDA = góc CDE(đối đỉnh)
=> \(\Delta ADB\sim\Delta EDC\left(g.g\right)\)
b) xét \(\Delta ADE\) và \(\Delta BDC\) có:
\(\dfrac{DE}{DB}=\dfrac{AD}{DC}\left(\Delta ADB\sim\Delta EDC\right)\)
góc ADE = góc BDC ( đối đỉnh )
=> \(\Delta ADE\sim\Delta BDC\left(c.g.c\right)\)
Cho ΔABC nhọn, kẻ đường cao BD và CE, vẽ các đường cao DF và EG của ΔADE. Chọn khẳng định đúng?
A. AD.AE = AB.AF
B. AD.AE = AB.AG = AC.AF
C. AD.AE = AC.GA
D. AD.AE = AB.AF = AC.AG
Từ câu trước ta có: A E A B = A G A D => AE.AD = AB.AG (1)
Chứng minh tương tự, ta được: ΔAFD ~ ΔAEC (c - c - c)
=> => AF.AC = AE.AD (2)
Từ (1) và (2) ta có: AD.AE = AB.AG = AC.AF
Đáp án: B
3.Cho tam giác nhọn ABC, vẽ các đường cao BD, CE.
a) Chứng minh rằng: ΔADB ~ ΔAEC và AE.AB = AD.AC.
b) Chứng minh rằng: ΔADE ~ ΔABC .
c) Vẽ EF vuông góc với AC tại F. Chứng minh rằng: AE.DF = AF.BE.
d) Gọi M, N lần lượt là trung điểm của các đoạn thẳng BD, CE.
Chứng minh rằng: hai góc BAC và MAN có chung tia phân giác.
Cho ΔABC nhọn, kẻ đường cao BD và CE, vẽ các đường cao DF và EG của ΔADE. Chọn khẳng định không đúng?
A. AD.AE=AB.AG
B. AD.AE = AC.AF
C. AD.AE = AC.FD
D. AE.EG = AB.BD
Từ câu trước ta có: A E A B = A G A D = E G B D => AE.AD = AB.AG (1) nên A đúng
Chứng minh tương tự, ta được: ΔAFD ~ ΔAEC (c - c - c)
=> A F A E = A D A C => AF.AC = AE.AD (2) nên B đúng
Ngoài ra A D A C = F D E C => AD.EC = AC.FD nên C đúng
Chỉ có đáp án D sai vì A E E G = A B B D
Đáp án: D