Những câu hỏi liên quan
0A
Xem chi tiết
H24
21 tháng 3 2022 lúc 20:54

C

Bình luận (0)
H24
21 tháng 3 2022 lúc 20:54

C

Bình luận (2)
KK
21 tháng 3 2022 lúc 20:55

C

Bình luận (0)
H24
Xem chi tiết
EC
13 tháng 3 2020 lúc 9:34

A B C H 7 cm 2 cm 2 cm

Ta có: AC = AH + HC = 7 + 2 = 9 (cm)

 Vì AB = AC => AB = 9 cm

Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:

AB2 = AH2 + BH2

=> BH2 = AB2 - AH2 = 92 - 72 = 32

Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:

 BC2 = BH2 + HC2 = 32 + 22 = 36

=> BC = 6 (cm)

Bình luận (1)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
1 tháng 3 2017 lúc 19:24

Đề bài của bạn hình như bị sai rồi

Bình luận (0)
HT
1 tháng 3 2017 lúc 19:28

ko . đúng rồi mà

Bình luận (0)
HT
Xem chi tiết
TT
8 tháng 2 2020 lúc 16:19

A B C

Ta có : \(\hept{\begin{cases}AB+AC=17\\AB-AC=7\end{cases}\Rightarrow}\hept{\begin{cases}AC=5\\AB=12\end{cases}\left(cm\right)}\)

Do \(\Delta ABC\) vuông tại A

\(\Rightarrow AB^2+AC^2=BC^2\) ( định lý Pytago )

\(\Rightarrow12^2+5^2=BC^2\)

\(\Leftrightarrow BC^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13\left(BC>0\right)\)

Vậy : \(BC=13\left(cm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
CD
8 tháng 2 2020 lúc 16:20

Theo bài ta có: \(AB+AC=17cm\)\(AB-AC=7cm\)

\(\Rightarrow\left(AB+AC\right)+\left(AB-AC\right)=17+7\left(cm\right)\)

\(\Leftrightarrow2AB=24\left(cm\right)\)\(\Leftrightarrow AB=12\left(cm\right)\)

\(\Rightarrow AC=17-12=5\left(cm\right)\)

\(\Delta ABC\)vuông tại A \(\Rightarrow\)Áp dụng định lí Pytago ta có:

\(AB^2+AC^2=BC^2\)\(\Rightarrow BC^2=12^2+5^2=169\)\(\Rightarrow BC=13\left(cm\right)\)

Vậy \(BC=13cm\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
8 tháng 2 2020 lúc 16:20

( Hình tự vẽ )

Ta có \(\hept{\begin{cases}AB+AC=17\\AB-AC=7\end{cases}}\)  (cm)

\(\Rightarrow\hept{\begin{cases}AB+AC-AB+AC=10\\AB+AC+AB-AC=24\end{cases}}\)  ( cm)

\(\Rightarrow\hept{\begin{cases}2AC=10\\2AB=24\end{cases}}\)  ( cm)

\(\Rightarrow\hept{\begin{cases}AC=5\\AB=12\end{cases}}\)   ( cm)

+) Xét \(\Delta ABC\)  vuông tại A 

\(\Rightarrow BC^2=AB^2+AC^2\)  ( định lí Py-ta-go )

\(\Rightarrow BC^2=12^2+5^2\)

\(\Rightarrow BC^2=144+25=169\)

\(\Rightarrow BC=\sqrt{169}=13\)  ( cm)

@@ Học tốt @@

Bình luận (0)
 Khách vãng lai đã xóa
VB
Xem chi tiết
NT
9 tháng 2 2021 lúc 11:54

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

Bình luận (0)
NL
9 tháng 2 2021 lúc 11:54

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

Bình luận (0)
VK
9 tháng 2 2021 lúc 12:00

undefined

Bình luận (0)
LD
Xem chi tiết
MB
Xem chi tiết
TH
16 tháng 3 2016 lúc 21:23

Độ dài đoạn AB=(17+7):2=12 cm

Đọ dài đoạn AC=(17-7):2=5cm

Vì tam giác ABC vuông tại A

Áp dụng định lý PI-ta-go có:

BC2=AB2+AC2

=>BC2=122+52

=>BC2=144+25

=>BC2=169

=>BC=\(\sqrt{169}=13cm\)

Bình luận (0)
H24
Xem chi tiết
HM
25 tháng 7 2023 lúc 21:38

Ta có: \(AB=AC=HA+HC=7+2=9\left(cm\right)\)

Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H có:

\(BH=\sqrt{AB^2-AH^2}=\sqrt{9^2-7^2}=4\sqrt{2}\left(cm\right)\)

Áp dụng định lí Py-ta-go vào tam giác BCH vuông tại H có:

\(BC=\sqrt{BH^2+CH^2}=\sqrt{\left(4\sqrt{2}\right)^2-2^2}=2\sqrt{7}\left(cm\right)\)

Bình luận (1)
TN
Xem chi tiết
NM
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Bình luận (3)