Cho tam giác ABC vuông tại A có góc B = 60 độ; AB=a:
a) vẽ hình, tính góc C.
b) tính BC; AC theo a.
c) tính các tỉ số lượng giác của góc 60 độ và góc 30 độ.
Cho tam giác ABC vuông tại A có góc B=60 °. Tia phân giác của góc ABCcho tam giác abc vuông tại a có góc b = 60 độ . tia phân giác của góc b cắt ac tại e , kẻ eh vuông góc đc tại h a) chứng minh tam giác abe = tam giác hbe b) hb=hc C) từ H kẻ đường thẳng song song với BE cắt AC ở K .c/m🔺AHK là tam giác đều d) gọi I là giao điểm của BA và HE. Chúng minh IE>EH
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
b: Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
mà EH là đường cao
nên H là trung điểm của BC
=>HB=HC
d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEI=góc HEC
=>ΔEAI=ΔEHC
=>EI=EC>EH
cho tam giác abc vuông tại a có góc b = 60 độ . tia phân giác của góc b cắt ac tại e , kẻ eh vuông góc bc tại h
a) c/m tam giác abe = tam giác hbe và hb=hc
cho tam giác ABC vuông tại A, có B=60 độ, tia phân giác của góc B cát AC tại D. Kẻ DE vuông góc với BC tại E
a)) chứng minh tam giác ABC = tam giác EBD
b)) chứng minh tam giác ABE là tam gics đều
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:
Chung DB
Góc ABD = Góc EBD ( BD là tia phân giác của góc ABC)
⇒ Tam giác ABD = Tam giac EBD ( cạnh huyền = góc nhọn)
b)Ta có tam giác ABD = tam giác EBD ( theo a)
⇒AB = EB ( 2 cạnh tương ứng)
⇒ Tam giác ABE cân tại B ( Định nghĩa tam giác cân)
do ngu do an hai
cho tam giác ABC vuông tại A, có góc B=60 độ và AB=5cm. Tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc với BC tại E
a) chứng minh: tam giác ABD=EBD
b) chứng minh: tam giác ABE là tam giác đều
c) Tính độ dài cạnh BC
Câu 3 : 1. cho tam giác abc với góc a = 40 độ , góc b= 60 độ
a. tính góc c
b . kẻ AM là tpgiác của góc a . tính góc amb và góc amc
2. cho tam giác abc vuông tại a có góc c= 30 độ
a. tính góc B
b. kẻ AH vuông BC tại H trên tia đối của tia HA lấy điểm K sao cho HA=HK . chứng minh BA =BK
c. Chứng Minh CB là tia phân giác của góc ACK
Ai trl nhanh nhất mik like ạ!
cần câu tl gấp: cho tam giác ABC vuông tại A, có B= 60 độ, AB= 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E. a) CM: tam giác ABD= tam giác EBD. b) CM: tam giác ABE là tam giác đều. c) tính độ dài cạnh BC.
-Lưu ý: Chỉ mang tính chất tóm tắt bài làm, bạn không nên trình bày theo nhé!
a) △ABD và △EBD có: \(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác của \(\widehat{ABC}\)) ; BD là cạnh chung ; \(\widehat{BAD}=\widehat{BED}=90^0\)
\(\Rightarrow\)△ABD=△EBD (c-g-c).
b) △ABD=△EBD (cmt) \(\Rightarrow AB=EB\) \(\Rightarrow\)△ABE cân tại B mà \(\widehat{ABC}=60^0\)
\(\Rightarrow\)△ABE đều.
c) \(\widehat{BAE}+\widehat{EAC}=90^0\Rightarrow60^0+\widehat{EAC}=90^0\Rightarrow\widehat{EAC}=30^0\)
\(\widehat{ABE}+\widehat{ACE}=90^0\Rightarrow60^0+\widehat{ACE}=90^0\Rightarrow\widehat{ACE}=30^0=\widehat{EAC}\)
\(\Rightarrow\)△AEC cân tại E. \(\Rightarrow AE=EC=AB=BE\)
\(\Rightarrow\)E là trung điểm BC và \(AB=\dfrac{1}{2}BC\)
\(\Rightarrow BC=10 \left(cm\right)\)
Cho tam giác ABC vuông tại A, BC= 5cm, góc B = 60 độ. Giải tam giác ABC
Câu 3 : 1. cho tam giác abc với góc a = 40 độ , góc b= 60 độ
a. tính góc c
b . kẻ AM là tpgiác của góc a . tính góc amb và góc amc
2. cho tam giác abc vuông tại a có góc c= 30 độ
a. tính góc B
b. kẻ AH vuông BC tại H trên tia đối của tia HA lấy điểm K sao cho HA=HK . chứng minh BA =BK
c. Chứng Minh CB là tia phân giác của góc ACK
Cho hình trụ tam giác ABC.A'B'C' có BB'=a, góc giữa đường thẳng BB' và mặt phẳng (ABC) bằng 60 độ; tam giác ABC vuông tại C và góc BAC bằng 60 độ. Hình chiếu vuông góc của B' lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Tính thể tích của khối tứ diện A'ABC theo a
Góc giữa BB' và (ABC) là \(\widehat{B'BG}=60^0\). Suy ra đường cao \(B'G=BB'.\sin60^0=\dfrac{a\sqrt{3}}{2}\)
Lại có \(BG=BB'.\cos60^0=\dfrac{a}{2}\)
Gọi M là trung điểm AC thì \(BM=\dfrac{3}{2}BG=\dfrac{3a}{4}\)
Đặt AC=x thì \(BC=AC.\tan 60^0=x\sqrt{3}\)
Suy ra \(BM=\sqrt{BC^2+CM^2}=\sqrt{3x^2+\dfrac{x^2}{4}}=\dfrac{x\sqrt{13}}{2}=\dfrac{3a}{4}\). Suy ra \(x=\dfrac{3a\sqrt{13}}{26}\)
Do đó \(S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{x^2\sqrt{3}}{2}=\dfrac{9a^2\sqrt{3}}{52}\)
Vậy \(V_{A'ABC}=\dfrac{1}{3}BB'.S_{ABC}=\dfrac{3a^2\sqrt{3}}{52}\)
Gọi G là trong tâm tam giác ABC ta có B′G⊥(ABC)Từ đó B′BCG^=600 là góc mà B′B′ tạo với mặt phẳng (ABC). Trong tam giác vuông BB′G ta có ngay: BG=a2,B′G=a3√2BG=a2,B′G=a32
Đặt AB=2xAB=2x, trong tam giác vuông ABCABC ta có:
AC=x,BC=x3√AC=x,BC=x3 (do ABCˆ=600ABC^=600)
Giả sử BG∩ACBG∩AC thì BN=a2BG=3a4BN=a2BG=3a4.
Áp dụng định lí py ta go trong tam giác vuông BNCBNC ta có:
BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)
ta có VA′ABC=13SABC.B′G=13.12.AB.BC.a3√2=a3√12x.x3√=ax24(2)VA′ABC=13SABC.B′G=13.12.AB.BC.a32=a312x.x3=ax24(2)
thay (2)(2) vào (1)(1) ta có: VA′.ABC=9a3208VA′.ABC=9a3208 (đvtt)
Cho tam giác ABC vuông tại A có góc B = 60 độ. Vẽ AH vuông góc BC. Chứng minh HB < HC.