Những câu hỏi liên quan
PB
Xem chi tiết
CT
21 tháng 11 2019 lúc 18:28

Chọn C

Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.

Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.

Trong tam giác vuông SAB' ta có:

Bình luận (0)
NA
Xem chi tiết
NL
5 tháng 2 2021 lúc 1:24

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

Bình luận (0)
PH
Xem chi tiết
HH
18 tháng 4 2021 lúc 18:44

Đáy là hình vuông hay chữ nhật bạn? Hình chữ nhật sao có các cạnh bằng nhau và bằng a được? 

Bình luận (0)
HT
Xem chi tiết
HT
1 tháng 5 2023 lúc 15:45

Cần gấp ạaaaa

Bình luận (0)
DD
1 tháng 5 2023 lúc 21:46

loading...

Của cậu nek!!!

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 8 2019 lúc 10:04

Bình luận (0)
NA
Xem chi tiết
NL
5 tháng 2 2021 lúc 1:27

Đề thiếu dữ liệu để xác định độ dài SA rồi bạn

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 5 2019 lúc 17:51

Chọn C

Gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp hình chóp S. BHD và tam giác BHD.

Ta có HB= a 2 2 , H D = H C 2 + D C 2 = a 2 2 2 + a 2 = a 6 2 , B D = a 2 + 2 a 2 = a 3

Áp dụng định lí Cô sin, ta có 

cos B H D ^ = a 2 2 + 3 a 2 2 - 3 a 2 2 . a 2 2 a 6 2 = - 1 3 ⇒ sin B H D ^ = 2 3

Diện tích tam giác BHD là

Gọi O là tâm đường tròn ngoại tiếp tam giác BHD và M là trung điểm SH. Mặt phẳng trung trực của SH cắt trục đường tròn ngoại tiếp tam giác BHD tại E. Khi đó E là tâm mặt cầu cần tìm.

Ta có

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 7 2019 lúc 6:35

Đáp án B

Mặt phẳng cách đều 5 điểm là mặt phẳng mà khoảng cách từ 5 điểm đó đến mặt phẳng là bằng nhau.

Có 5 mặt phẳng thỏa mãn là:

+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SBC .

+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SAD .

+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SAB .

+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SCD .

+ Mặt phẳng đi qua trung điểm của SA,SB,SC,SD.

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 4 2017 lúc 2:54

Bình luận (0)
H24
Xem chi tiết