Viết phương trình của Parabol (P) biết rằng (P) đi qua các điểm A (0; 2), B (-2; 5), C (3; 8)
A. y = 7 10 x 2 + 1 10 x − 2
B. y = 7 10 x 2 − 1 10 x + 2
C. y = 7 10 x 2 − 1 10 x − 2
D. y = 7 10 x 2 + 1 10 x + 2
Cho hàm số \(y = f(x) = a{x^2} + bx + c\) với đồ thị là parabol (P) có đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\) và đi qua điểm \(A(1;2)\)
a) Biết rằng phương trình của parabol có thể viết dưới dạng \(y = a{(x - h)^2} + k\), tron đó I(h;k) là tọa độ đỉnh của parabol. Hãy xác định phương trình của parabol (P) đã cho và vẽ parabol này.
b) Từ parabol (P) đã vẽ ở câu a, hãy cho biết khoảng đồng biến và khoảng nghịch biến của hàm số \(y = f(x)\)
c) Giải bất phương trình \(f(x) \ge 0\)
a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.
\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)
(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)
\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)
Vậy parabol đó là \(y = {x^2} - 5x + 6\)
b) Vẽ parabol \(y = {x^2} - 5x + 6\)
+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)
+ Giao với Oy tại điểm \((0;6)\)
+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)
+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)
b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)
Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)
c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)
Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)
Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)
Cách 2:
\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)
Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)
Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)
a. Viết phương trình đường thẳng đi qua gốc tọa độ O và điểm M(2;4)
b. Viết phương trình parabol dạng y= a.x^2 và đi qua điểm M(2;4)
c. Vẽ parabol và đường thẳng trên trong cùng một hệ trục tọa độ và tìm tọa độ giao điểm của chúng. Help me! Thanks :)
Trong mặt phẳng Oxy, cho parabol P : y = -x 2 và đường thẳng d đi qua điểm M 0;-1 có hệ số góc k. c Viết phương trình đường thẳng d . Chứng minh rằng với mọi giá trị của ,k d luôn cắt P tại hai điểm phân biệt A,B. giúp mình nha
\(y=ax^2+bx+c\left(a\ne0\right)\)
\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)
\(\Rightarrow y=x^2-x-1\)
Trong mặt phẳng toạ độ Oxy,cho parabol(P):y=-x2 và đường thẳng (d) đi qua điểm I(0;1) có hệ số góc k
Viết phương trình đường thẳng (d).Chứng minh rằng :Với mọi giá trị của k, đường thẳng (d) luôn cắt parabol(P) tại hai điểm phân biệt A và B
Viết phương trình parabol đi qua các điểm cực trị của đồ thị C : y = x 3 - 3 x 2 + 4 và tiếp xúc với đường thẳng y = -2x + 2
A. y = 2 x 2 - 6 x + 4
B. y = 2 x 2 + 6 x + 4
C. y = 2 x 2 - 6 x - 4
D. y = - 2 x 2 + 6 x + 4
(C) có hai điểm cực trị là A ( 0;4 ); B ( 2;0 )
Gọi (P): a x 2 + b x + c a ≠ 0 là parabol cần tìm.
Ta có
A , B ∈ P ⇒ c = 4 4 a + 2 b + c = 0 ⇒ b = - 2 a - 2 c = 4
Khi đó: (P): y = a x 2 - 2(a + 1 )x + 4
(P) tiếp xúc với đường thẳng y = -2x + 2 khi và chỉ khi hệ sau có nghiệm:
a x 2 - 2 a + 1 x + 4 1 2 a x - 2 a + 1 = - 2 1 = - 2 x + 2 ⇒ a = 2 ⇒ b = - 6
Vậy parabol (P): y = 2 x 2 - 6 x + 4
Đáp án A
Cho hàm số \(y=\left(2-x\right)^2x^2\) có đồ thị (C)
a. Viết phương trình tiếp tuyến tại giao điểm (C) với Parabol \(y=x^2\)
b. Viết phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua điểm A(2;0)
Ta có \(y=x^4-4x^3+4x^2\Rightarrow4x^3-12x^2+8x\)
a. PTHD giao điểm của (C) và Parabol \(y=x^2\) :
\(x^4-4x^3+4x^2=x^2\Leftrightarrow x^2\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x=0;x=1;x=3\)
* \(x=0\) ta có phương trình tiếp tuyến là \(y=0\)
* \(x=2\) ta có phương trình tiếp tuyến là \(y=1\)
* \(x=3\) ta có phương trình tiếp tuyến là \(y=24x-63\)
b. Gọi d là đường thẳng đi qua A, có hệ số góc k \(\Rightarrow d:y=k\left(x-2\right)\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\left(2-x\right)^2x^2-k\left(x-2\right)\\4x\left(x-2\right)\left(x-1\right)=k\end{cases}\) có nghiệm
Thay k vào phương trình thứ nhất ta có :
\(x^4-4x^3+4x^2=\left(x-2\right)\left(4x^3-12x^2+8x\right)\)
\(\Leftrightarrow x\left(3x-4\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow x=0;x=2;x=\frac{4}{3}\)
* \(x=0\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)
* \(x=2\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)
* \(x=\frac{4}{3}\Rightarrow k=-\frac{32}{27}\Rightarrow\) Phương trình tiếp tuyến \(y=-\frac{32}{27}x+\frac{64}{27}\)
Xác định parabol (P): y = ax2 + bx + c biết rằng parabol (P) đi qua ba điểm A(1; 1), B(-1; -3) và O(0; 0).
A. y = x2 + 2x.
B. y = -x2 – 2x.
C. y = -x2 + 2x.
D. y = x2 – 2x.
Vì parabol đi qua ba điểm A, B, C nên ta có hệ phương trình:
Vậy (P): y = -x2 + 2x
Chọn C.
Bài 9 : Cho parabol y = ax2 và điểm A(– 2 ; – 1)
a) Xác định hệ số a biết parabol đi qua điểm A.
b) Viết phương trình đường thẳng d tiếp xúc với parabol tại điểm A.
Vì P đi qua điểm A
Thay vèo ta cóa \(-1=a.4\Rightarrow a=-\frac{1}{4}\)
Ý b thiếu dữ kiện à bn ơi ?
í b thiếu dữ kiện
bn bị thiếu dữ kiện rồi