Hệ phương trình √3x - 7y = 1; 2x + 5y = o có số nghiệm là
a.0
b.1
c.2
d. vô số nghiệm
Cho hệ phương trình x + 0 y = - 2 5 x - y = - 9
Nghiệm của hệ phương trình này có phải là nghiệm của phương trình 3x – 7y = 1 hay không?
Thay x = -2, y = -1 vào phương trình 3x – 7y = 1, ta có:
3.(-2) – 7.(-1) = -6 + 7 = 1
Vậy x và y thỏa phương trình 3x – 7y = 1 nên (x; y) = (-2; -1) là nghiệm của phương trình 3x – 7y = 1.
Giai hệ phương trình:
\(\hept{\begin{cases}2x^3y+3x^2=5y\\1+6xy=7y^2\end{cases}}\)
\(\left\{{}\begin{matrix}2x^3y+3x^2=5y\\1+6xy=7y^2\end{matrix}\right.\)
Giải hệ phương trình: \(\hept{\begin{cases}\frac{2}{3x-1}+5y=7\\\frac{-3}{3x-1}+7y=4\end{cases}}\)Nhờ các bạn giúp với
t =1/3x-1
ta có phương trình
\(\hept{\begin{cases}2t+5y=7\\-3t+7y=4\end{cases}}\)
=> t= 1
y =1
ta có 1/3x-1=1
=> x= 2/3
vậy hệ phương trình có nghiệm x y lần lượt là 2/3 và 1
Giai hệ phương trình:
\(\left\{{}\begin{matrix}2x^3y+3x^2=5y\\1+6xy=7y^2\end{matrix}\right.\)
đừng đùa nhau thế chứ bn iu < đúng vậy , người ta nói ko sai: rảnh rỗi sinh nông nỗi mà>
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}3x-7y=0\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x-7y=0\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=7y\\20\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{7y}{3}+y}+\dfrac{1}{\dfrac{7y}{3}-y}=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{10y}{3}}+\dfrac{1}{\dfrac{4y}{3}}=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{10y}+\dfrac{3}{4y}=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{2}\left(\dfrac{1}{5y}+\dfrac{1}{2y}\right)=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{2}{10y}+\dfrac{5}{10y}=\dfrac{7}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{7}{10y}=\dfrac{7}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\10y=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7.3}{3}\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=3\end{matrix}\right.\)
ĐKXĐ: \(x\ne\pm y\)
Với điều kiện \(x\ne\pm y\) hệ phương trình đã cho
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)=5\left(x-y\right)\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+y}=\dfrac{2}{x-y}\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)
Đặt \(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b\)
ta có hệ phương trình: \(\left\{{}\begin{matrix}5a=2b\\20a+20b=7\end{matrix}\right.\)
Giải hệ phương trình được \(a=\dfrac{1}{10};b=\dfrac{1}{4}\)
Thay vào hệ ta giải tìm \(x=7;y=3\)
giải hệ phương trình \(\hept{\begin{cases}\sqrt{3x}\left(1+\frac{1}{x+y}\right)=2\\\sqrt{7y}\left(1-\frac{1}{x+y}\right)=4\sqrt{2}\end{cases}}\)
Cho e xin lời giải vs ạ
Kaneki Ken
đk: \(x\ge0;y\ge0;x\ne-y\)
hpt \(\Leftrightarrow\)\(\hept{\begin{cases}2\sqrt{6x}\left(x+y+1\right)=4\sqrt{2}\left(x+y\right)\\\sqrt{7y}\left(x+y-1\right)=4\sqrt{2}\left(x+y\right)\end{cases}}\)
\(\Rightarrow\)\(2\sqrt{6x}\left(x+y+1\right)=\sqrt{7y}\left(x+y-1\right)\)
\(\Leftrightarrow\)\(\left(2\sqrt{6x}-\sqrt{7y}\right)\left(x+y+1\right)=0\)
...
Giải hệ phương trình
\(\hept{\begin{cases}\sqrt{3x}\left(1+\frac{1}{x+y}\right)=2\\\sqrt{7y}\left(1-\frac{1}{x+y}\right)=4\sqrt{2}\end{cases}}\)
Bn lên mạng hoặc vào câu hỏi tương tự nhé!
mk bận rồi!
k mk nha!
thanks!
haha!
Trả lời :
Bn _♥Hàn_Thiên_Nhi♥Tiểu_La_Thành♥_ đừng bình luận linh tinh nhé !
- Hok tốt !
^_^
Đúng đó
Cho hệ phương trình 8 x + 7 y = 16 8 x − 3 y = − 24 . Nghiệm của hệ phương trình là:
A. ( x ; y ) = − 3 2 ; 4
B. ( x ; y ) = 4 ; − 3 2
C. ( x ; y ) = − 3 2 ; − 4
D. (x; y) = (−2; 2)
Ta có
8 x + 7 y = 16 8 x − 3 y = − 24 ⇔ 8 x + 7 y = 16 8 x + 7 y − 8 x − 3 y = 16 − − 24 ⇔ 8 x + 7 y = 16 10 y = 40 ⇔ y = 4 8 x + 7.4 = 16 ⇔ y = 4 x = − 3 2
Vậy hệ phương trình có nghiệm duy nhất ( x ; y ) = − 3 2 ; 4
Đáp án: A
Cho hệ phương trình 8 x + 7 y = 16 8 x - 3 y = - 24 . Nghiệm của hệ phương trình là
A. x ; y = - 3 2 ; 4
B. x ; y = 4 ; - 3 2
C. x ; y = - 3 2 ; - 4
D. x ; y = - 2 ; 2