H24

Giải hệ phương trình sau: \(\left\{{}\begin{matrix}3x-7y=0\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)

H24
3 tháng 1 2022 lúc 21:47

\(\left\{{}\begin{matrix}3x-7y=0\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=7y\\20\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{7y}{3}+y}+\dfrac{1}{\dfrac{7y}{3}-y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{10y}{3}}+\dfrac{1}{\dfrac{4y}{3}}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{10y}+\dfrac{3}{4y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{2}\left(\dfrac{1}{5y}+\dfrac{1}{2y}\right)=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{2}{10y}+\dfrac{5}{10y}=\dfrac{7}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{7}{10y}=\dfrac{7}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\10y=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7.3}{3}\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=3\end{matrix}\right.\)

 

 

Bình luận (0)
PG
3 tháng 1 2022 lúc 21:49

ĐKXĐ:    \(x\ne\pm y\)

Với điều kiện \(x\ne\pm y\) hệ phương trình đã cho 

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)=5\left(x-y\right)\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+y}=\dfrac{2}{x-y}\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)

Đặt \(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b\)

ta có hệ phương trình:   \(\left\{{}\begin{matrix}5a=2b\\20a+20b=7\end{matrix}\right.\)

Giải hệ phương trình được \(a=\dfrac{1}{10};b=\dfrac{1}{4}\)

Thay vào hệ ta giải tìm \(x=7;y=3\)

Bình luận (0)

Các câu hỏi tương tự
3P
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết
MV
Xem chi tiết
PM
Xem chi tiết
TL
Xem chi tiết
PP
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết