Những câu hỏi liên quan
TL
Xem chi tiết
NT
25 tháng 2 2022 lúc 20:46

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Bình luận (0)
BM
Xem chi tiết
NT
9 tháng 1 2024 lúc 10:46

a: \(x^2+\left(2m+1\right)x+m^2-3=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-3\right)\)

\(=4m^2+4m+1-4m^2+12=4m+13\)

Để phương trình có nghiệm kép thì 4m+13=0

=>\(m=-\dfrac{13}{4}\)

Thay m=-13/4 vào phương trình, ta được:

\(x^2+\left(2\cdot\dfrac{-13}{4}+1\right)x+\left(-\dfrac{13}{4}\right)^2-3=0\)

=>\(x^2-\dfrac{11}{2}x+\dfrac{121}{16}=0\)

=>\(\left(x-\dfrac{11}{4}\right)^2=0\)

=>x-11/4=0

=>x=11/4

b: TH1: m=2

Phương trình sẽ trở thành \(\left(2+1\right)x+2-3=0\)

=>3x-1=0

=>3x=1

=>\(x=\dfrac{1}{3}\)

=>Khi m=2 thì phương trình có nghiệm kép là x=1/3

TH2: m<>2

\(\text{Δ}=\left(m+1\right)^2-4\left(m-2\right)\left(m-3\right)\)

\(=m^2+2m+1-4\left(m^2-5m+6\right)\)

\(=m^2+2m+1-4m^2+20m-24\)

\(=-3m^2+22m-23\)

Để phương trình có nghiệm kép thì Δ=0

=>\(-3m^2+22m-23=0\)

=>\(m=\dfrac{11\pm2\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11+2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2-2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1-\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11-2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2+2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1+\sqrt{13}}{3}\)

c: TH1: m=0

Phương trình sẽ trở thành

\(0x^2-\left(1-2\cdot0\right)x+0=0\)

=>-x=0

=>x=0

=>Nhận

TH2: m<>0

\(\text{Δ}=\left(-1+2m\right)^2-4\cdot m\cdot m\)

\(=4m^2-4m+1-4m^2=-4m+1\)

Để phương trình có nghiệm kép thì -4m+1=0

=>-4m=-1

=>\(m=\dfrac{1}{4}\)

Khi m=1/4 thì \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-1+2m\right]}{m}=\dfrac{-2m+1}{m}\)

=>\(x_1+x_2=\dfrac{-2\cdot\dfrac{1}{4}+1}{\dfrac{1}{4}}=\dfrac{-\dfrac{1}{2}+1}{\dfrac{1}{4}}=\dfrac{1}{2}:\dfrac{1}{4}=2\)

=>\(x_1=x_2=\dfrac{2}{2}=1\)

Bình luận (0)
H24
Xem chi tiết
NL
7 tháng 1 2024 lúc 21:38

Do pt có nghiệm \(x=1\) nên \(a+b+c=0\Rightarrow1-2m+m-4=0\)

\(\Rightarrow m=-3\)

Giá trị của nghiệm còn lại là: \(x_2=\dfrac{c}{a}=\dfrac{m-4}{1}=-7\)

Bình luận (0)
HC
Xem chi tiết
NL
5 tháng 7 2021 lúc 18:36

a.

Khi \(m=2\) pt trở thành:

\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)

b.

Để pt có nghiệm \(x=-1\)

\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)

\(\Leftrightarrow-m^2+m+m^2-1=0\)

\(\Leftrightarrow m-1=0\)

\(\Leftrightarrow m=1\)

c.

Pt tương đương:

\(\left(m^2-m\right)x=-\left(m^2-1\right)\)

\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)

Pt vô nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)

Pt có vô số nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)

Bình luận (0)
AH
5 tháng 7 2021 lúc 18:40

Lời giải:

a. Khi $m=2$ thì pt trở thành:

$2x+3=0\Leftrightarrow x=-\frac{3}{2}$

b. Để pt có nghiệm $x=-1$ thì:

$(m^2-m).(-1)+m^2-1=0$

$\Leftrightarrow m-1=0\Leftrightarrow m=1$

c. 

PT $\Leftrightarrow (m^2-m)x=1-m^2$

Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\) 

\(\Leftrightarrow m=0\)

PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)

Để PT có nghiệm thì: $m\neq 0$

 

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 7 2017 lúc 6:41

Bình luận (0)
MK
Xem chi tiết

Với m=−1 thì PT f(x)=0 có nghiệm x=1 (chọn)

Với m≠−1 thì f(x) là đa thức bậc 2 ẩn x

f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0

⇔−m2−2m≥0⇔m(m+2)≤0

⇔−2≤m≤0

Tóm lại để f(x)=0 có nghiệm thì 

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NT
11 tháng 12 2021 lúc 22:56

a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]

Bảng biến thiên là:

x-∞2+∞
y-∞1-∞

 

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 9 2019 lúc 6:27

Đáp án B.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 10 2017 lúc 18:05

Bình luận (0)