Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PA
Xem chi tiết
LM
Xem chi tiết
NA
29 tháng 8 2020 lúc 18:27

x2+ax+1=0

Δ1=a²−4

x2+bx+1=0

Δ2=b²−4

Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2

→ Hoặc Δ1=a²−4≥0

→ Hoặc Δ2=b²≥0

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
26 tháng 10 2017 lúc 15:26


a) ax^2 + bx + c = 0 

Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. 

∆ > 0 
=> b^2 - 4ac > 0 

x1 + x2 = -b/a > 0 
=> b và a trái dấu 

x1.x2 = c/a > 0 
=> c và a cùng dấu 

Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 

∆ = b^2 - 4ac >0 

x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 

x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 

=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 

Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. 

b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. 

x1 + x2 ≥ 2√( x1.x2 ) 
x3 + x4 ≥ 2√( x3x4 ) 

=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) 

Tiếp tục côsi cho 2 số không âm ta có 

√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) 

Theo a ta có 

x1.x2 = c/a 
x3.x4 = a/c 

=> ( x1.x2 )( x3.x4 ) = 1 

=> 2√[√( x1.x2 )( x3.x4 ) ] = 2 

Từ (#) và (##) ta có 

x1 + x2 + x3 + x4 ≥ 4

Bình luận (0)
NN
26 tháng 10 2017 lúc 15:43

Đọc nhầm đề bạn ơi =))

Bình luận (0)
LN
Xem chi tiết
NH
30 tháng 3 2018 lúc 22:18

tham khảo:https://www.vatgia.com/hoidap/5272/114204/toan-kho-lop-9-day--help.html

Bình luận (0)
PD
30 tháng 3 2018 lúc 22:48

ta có : ax=-(x^2+1) 
bx=-(x^2+1) 
abx=-(x^2+1) 
=>ax=bx=abx 
nếu x<>0 thi a=b=ab 
=> a=b=1 => 4/(ab)^2 -1/a^2-1/b^2=2 
nếu x=0 thi a=b=-1 
thì 4/(ab)^2 -1/a^2-1/b^2=2 
vậy 4/(ab)^2 -1/a^2-1/b^2=2

Bình luận (0)
MA
Xem chi tiết
NL
2 tháng 3 2022 lúc 14:38

Đặt \(f\left(x\right)=ax^2+bx+c\)

Hàm f(x) liên tục trên R

Ta có:  \(f\left(1\right)=a+b+c\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{a}{4}+\dfrac{b}{2}+c\)

\(\Rightarrow f\left(1\right)+f\left(\dfrac{1}{2}\right)=\dfrac{5a}{4}+\dfrac{3b}{2}+2c=0\)

\(\Rightarrow f\left(1\right)=-f\left(\dfrac{1}{2}\right)\)

\(\Rightarrow f\left(1\right).f\left(\dfrac{1}{2}\right)=-\left[f\left(1\right)\right]^2\le0\)

\(\Rightarrow f\left(x\right)\)  luôn có ít nhất 1 nghiệm thuộc \(\left[\dfrac{1}{2};1\right]\) hay pt đã cho luôn có nghiệm

Bình luận (0)
VL
Xem chi tiết
NU
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 7 2019 lúc 14:59

Đặt f(x) = ax2 + bx + c

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
H24
Xem chi tiết
PN
1 tháng 7 2020 lúc 15:57

Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)

Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)

Hay \(\Delta>\left(a-c\right)^2\ge0\)

Vậy ta có điều phải chứng mình 

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 7 2020 lúc 16:20

b > a + c thì chưa đủ điều kiện chứng minh b^2 > (a + c)^2 mà?

Bình luận (0)
 Khách vãng lai đã xóa
PN
3 tháng 7 2020 lúc 16:29

bình phương 2 vế nhé bạn 

Bình luận (0)
 Khách vãng lai đã xóa