Những câu hỏi liên quan
MP
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
HP
12 tháng 12 2020 lúc 23:07

Đề đúng chưa v

Bình luận (0)
DT
Xem chi tiết
TT
27 tháng 6 2017 lúc 10:07

Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:

\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)

Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:

\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)

Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)

Bình luận (0)
DT
27 tháng 6 2017 lúc 10:34

Hay ghê :)

Bình luận (0)
TT
27 tháng 6 2017 lúc 11:01

Cảm ơn bạn quá khen!

Bình luận (0)
H24
Xem chi tiết
NT
14 tháng 6 2023 lúc 11:29

f(x) chia hết cho x^2+3x-1

=>(2a-b)=0 và 3b+a=0

=>a=b=0

Bình luận (0)
NH
Xem chi tiết
H24
8 tháng 3 2019 lúc 9:54

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

Bình luận (0)
H24
8 tháng 3 2019 lúc 9:54

1.b) Y chang câu a!

Bình luận (0)
H24
8 tháng 3 2019 lúc 10:03

Tớ nêu hướng giải bài 3 thôi nhé:

Bài toán: Cho đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) 

Chứng minh tổng các hệ số của đa thức f(x) là giá trị của đa thức khi x = 1

                                  Lời giải:

Thật vậy,thay x = 1 vào:

\(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) (đúng bằng tổng các hệ số của đa thức)

Vậy tổng các hệ số của 1 đa thức chính là giá trị của đa thức đó khi x = 1 (đpcm)

Bình luận (0)
DQ
Xem chi tiết
CR
Xem chi tiết
00
Xem chi tiết
TP
21 tháng 4 2019 lúc 11:09

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....

Bình luận (0)