cmr (a+b)^3=a^3-a^2b+3ab^2-b^3 ; (a-b)^3= a^ - 3a^2b+3ab^2-b^3 ;
CMR các biểu thức sau bằng nhau :
1 ) \(\left(a+b\right)^3\) và \(a^3+3a^2b+3ab^2+b^3\)
2 ) \(\left(a-b\right)^3\) và \(a^3-3a^2b+3ab^2-b^3\)
1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\)
Cho \(\left(a+\sqrt{a^2+2}\right)\left(b-1+\sqrt{b^2-2b+3}\right)=2\)
CMR \(a^3+b^3+3ab=1\)
1. CMR: Nếu a,b,c là độ dài 3 cạnh tam giác thì:
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
2. PTĐT thành nhân tử
a) \(a^6+a^4+a^2b^2+b^4+b^6\)
b) \(a^3+3ab+b^3-1\)
c) \(a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)-c^2a^2\left(c-a\right)\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
2.
\(a,Sửa:a^6+a^4+a^2b^2+b^4-b^6\\ =\left(a^6-b^6\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2+b^2\right)^2-a^2b^2\right]\left(a^2-b^2+1\right)\\ =\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(a^2-b^2+1\right)\\ b,=\left(a^3+b^3\right)-1+3ab\\ =\left(a+b\right)^3-3ab\left(a+b\right)-1+3ab\\ =\left(a+b-1\right)\left(a^2+2ab+b^2+a+b+1\right)-3ab\left(a+b-1\right)\\ =\left(a+b-1\right)\left(a^2+b^2+1+a+b-ab\right)\)
\(c,=a^2b^2\left(b-a\right)+b^2c^2\left(c-a+a-b\right)-c^2a^2\left(c-a\right)\\ =-a^2b^2\left(a-b\right)+b^2c^2\left(a-b\right)+b^2c^2\left(c-a\right)-c^2a^2\left(c-a\right)\\ =\left(a-b\right)\left(b^2c^2-a^2b^2\right)+\left(c-a\right)\left(b^2c^2-c^2a^2\right)\\ =b^2\left(a-b\right)\left(c-a\right)\left(c+a\right)+c^2\left(c-a\right)\left(b-a\right)\left(b+a\right)\\ =\left(a-b\right)\left(c-a\right)\left[b^2\left(c+a\right)-c^2\left(b+a\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b^2c+ab^2-bc^2-ac^2\right)\\ =\left(a-b\right)\left(c-a\right)\left[bc\left(b-c\right)+a\left(b-c\right)\left(b+c\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(bc+ab+ac\right)\)
Cho \(\left(a+\sqrt{a^2+2}\right)\left(b-1+\sqrt{b^2-2b+3}\right)=2\)
CMR \(a^3+b^3+3ab=1\)
c/m đẳng thức 2ab/a-b-a^3+b^3/b^2-a^2=a^3-a^2b-ab^2-2b^2/a^2-3ab+2b^2
??????????????????????????????????
Chứng minh giả thiết (a+b)^3 =a^3+3a^2b+3ab^2
(a+b).(a-b)=a^2+b^2
(a-b)^3=a^3-3a^2b+3ab^2-b^3
a^3+b^3=(a+b).(a^2-ab+b^2
a^3-b^3=(a-b).(a^2+ab+b^2
Acebb giúp mk với mk sắp phải nộp r
a, A=a^3-12a^2b+48ab^2-64b^3 khi 3a=2b và a-b=1
b, B=a^3-3ab+b^3 khi 3a=2b và a-b=1
b) Ta có \(\hept{\begin{cases}3a=2b\\a-b=1\end{cases}}\Rightarrow a=\frac{2}{3}b=b+1\Rightarrow\hept{\begin{cases}b=-3\\a=-2\end{cases}}\)
Khi đó B = a3 - 3ab + b3
= \(\left(-2\right)^3-3\left(-2\right)\left(-3\right)+\left(-3\right)^3=-8-18-27=-53\)
a) Tương từ câu b) ta tìm được a = -2 ; b = -3
Khi đó A = \(\left(-2\right)^3-12\left(-2\right)^2\left(-3\right)+48\left(-2\right)\left(-3\right)^2-64\left(-3\right)^3\)
\(=-8+144-864+1728=1000\)
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
chứng minh đẳng thức
a. (a-b)^2 = a^2 - 2ab +b^2
b. (a+b)^3= a^3 + 3a^2b+ 3ab^=+ b^3
c. (a-b)^3= a^3 - 3a^2b +3ab^2 -b^2
d. ( a-b)^3= a^3- 3a^2b+ 3ab^2 -b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 -b^3
g. ( a-b) ( a+b) = a^2- b^2
h. ( a+b+c) ( a^2 + b^2 +c^2 - ab- bc -ac )= a^3+ b^3=c^3 -3abc
k.( a+b+c)^2 = a^2 +b^2 + c^2 + 2ab+ 2bc+2ac
m.( x^3+ x^2y+xy^2+ y^2) ( x-y) = x^4 -y^4
n. ( a+b) ( a^3 -ab +b^2) + ( a-b) ( a^2 +ab +b^2)= 2a^3
a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2
b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3
c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3
g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2