Những câu hỏi liên quan
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 16:01

Từ M kẻ đường thẳng song song với AB, cắt AD tại E.

Khi đó tứ giác ABME là hình bình hành.

Do đó: \(\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AE} \).

Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)

\( \Rightarrow \overrightarrow {AE}  = \frac{1}{2}\overrightarrow {AD} \)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Vậy \(\overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Chú ý khi giải

+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 15:49

Dễ thấy:

Vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)có cùng giá nên chúng cùng phương.

Mà vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)cùng nằm trên tia OM nên chúng cùng chiều

Vậy vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)cùng hướng.

Ngoài ra, \(\left| {\overrightarrow {OM} } \right| = OM = \sqrt 2 \) và \(\left| {\overrightarrow {OA} } \right| = OA = 1\)

\( \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt 2 .\left| {\overrightarrow {OA} } \right|\)

Ta kết luận \(\overrightarrow {OM}  = \sqrt 2 .\overrightarrow {OA} \).

Bình luận (0)
QL
Xem chi tiết
KT
24 tháng 9 2023 lúc 20:24

Tham khảo:

Dựng hình bình hành OAMB và OCND như hình dưới:

 

Khi đó: \(\overrightarrow {OM}  = \overrightarrow {OA}  + \overrightarrow {OB} \) và \(\overrightarrow {ON}  = \overrightarrow {OC}  + \overrightarrow {OD} \).

Dễ thấy:

\(\overrightarrow {OA}  = 3\;\overrightarrow i ;\;\,\overrightarrow {OB}  = 5\;\overrightarrow j \) và \(\overrightarrow {OC}  =  - 2\;\overrightarrow i ;\;\,\overrightarrow {OD}  = \frac{5}{2}\;\overrightarrow j \)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {OM}  = 3\;\overrightarrow i  + 5\;\overrightarrow j \\\overrightarrow {ON}  =  - 2\;\overrightarrow i  + \frac{5}{2}\;\overrightarrow j \end{array} \right.\)

b) Ta có: \(\overrightarrow {MN}  = \overrightarrow {ON}  - \;\overrightarrow {OM} \) (quy tắc hiệu)

\(\begin{array}{l} \Rightarrow \overrightarrow {MN}  = \left( { - 2\;\overrightarrow i  + \frac{5}{2}\;\overrightarrow j } \right) - \left( {\;3\;\overrightarrow i  + 5\;\overrightarrow j } \right)\\ \Leftrightarrow \overrightarrow {MN}  = \left( { - 2\;\overrightarrow i  - 3\;\overrightarrow i } \right) + \left( {\frac{5}{2}\;\overrightarrow j  - 5\;\overrightarrow j } \right)\\ \Leftrightarrow \overrightarrow {MN}  =  - 5\;\overrightarrow i  - \frac{5}{2}\;\overrightarrow j \end{array}\)

Vậy \(\overrightarrow {MN}  =  - 5\;\overrightarrow i  - \frac{5}{2}\;\overrightarrow j \).

Bình luận (0)
QL
Xem chi tiết
HM
28 tháng 9 2023 lúc 23:41

a) Vẽ các vecto \(\overrightarrow {OA}  = \overrightarrow a ,\overrightarrow {OB}  = \overrightarrow b ,\overrightarrow {OC}  = \overrightarrow c ,\overrightarrow {OD}  = \overrightarrow d \)

Dựa vào hình vẽ, ta thấy tọa độ của 4 điểm A, B, C, D là:

\(A\left( { - 5; - 3} \right),B\left( {3; - 4} \right),C\left( { - 1;3} \right),D\left( {2;5} \right)\)

Do đó \(\overrightarrow a  = \overrightarrow {OA}  = \left( { - 5; - 3} \right),\overrightarrow b  = \overrightarrow {OB}  = \left( {3; - 4} \right),\overrightarrow c  = \overrightarrow {OC}  = \left( { - 1;3} \right),\overrightarrow d  = \overrightarrow {OD}  = \left( {2;5} \right)\)

b) Vì \(\overrightarrow a  = \overrightarrow {OA}  = \left( { - 5; - 3} \right)\)nên \(\overrightarrow a  = \left( { - 5} \right)\overrightarrow i  + \left( { - 3} \right)\overrightarrow j  =  - 5\overrightarrow i  - 3\overrightarrow j \)

Vì \(\overrightarrow b  = \overrightarrow {OB}  = \left( {3; - 4} \right)\) nên \(\overrightarrow b  = 3\overrightarrow i  + \left( { - 4} \right)\overrightarrow j  = 3\overrightarrow i  - 4\overrightarrow j \)

Vì \(\overrightarrow c  = \overrightarrow {OC}  = \left( { - 1;3} \right)\) nên \(\overrightarrow c  = \left( { - 1} \right)\overrightarrow i  + \left( 3 \right)\overrightarrow j  =  - \overrightarrow i  + 3\overrightarrow j \)

Vì \(\overrightarrow d  = \overrightarrow {OD}  = \left( {2;5} \right)\) nên \(\overrightarrow d  = 2\overrightarrow i  + 5\overrightarrow j \)

Bình luận (0)
UN
Xem chi tiết
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 20:25

a) Ta có: \(\overrightarrow u  = (2; - 3)\)

\( \Rightarrow \overrightarrow u  = 2.\;\overrightarrow i  + \left( { - 3} \right).\;\overrightarrow j \)

Tương tự ta có: \(\overrightarrow v  = (4;1),\;\overrightarrow a  = (8; - 12)\)

\( \Rightarrow \overrightarrow v  = 4.\;\overrightarrow i  + 1.\;\overrightarrow j ;\;\;\overrightarrow a  = 8.\;\overrightarrow i  + \left( { - 12} \right).\;\overrightarrow j \)

b) Ta có: \(\left\{ \begin{array}{l}\overrightarrow u  = 2.\;\overrightarrow i  + \left( { - 3} \right).\;\overrightarrow j \\\overrightarrow v  = 4.\;\overrightarrow i  + 1.\;\overrightarrow j \end{array} \right.\)(theo câu a)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\overrightarrow u  + \;\overrightarrow v  = \left( {2.\;\overrightarrow i  + \left( { - 3} \right).\;\overrightarrow j } \right) + \left( {4.\;\overrightarrow i  + 1.\;\overrightarrow j } \right)\\4.\;\overrightarrow u  = 4\left( {2.\;\overrightarrow i  + \left( { - 3} \right).\;\overrightarrow j } \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u  + \;\overrightarrow v  = \left( {2.\;\overrightarrow i  + 4.\;\overrightarrow i } \right) + \left( {\left( { - 3} \right).\;\overrightarrow j  + 1.\;\overrightarrow j } \right)\\4.\;\overrightarrow u  = 4.2.\;\overrightarrow i  + 4.\left( { - 3} \right).\;\overrightarrow j \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u  + \;\overrightarrow v  = 6.\;\overrightarrow i  + \left( { - 2} \right).\;\overrightarrow j \\4.\;\overrightarrow u  = 8.\;\overrightarrow i  + \left( { - 12} \right).\;\overrightarrow j \end{array} \right.\end{array}\)

c) Vì \(\left\{ \begin{array}{l}4.\;\overrightarrow u  = 8.\;\overrightarrow i  + \left( { - 12} \right).\;\overrightarrow j \\\overrightarrow a  = 8.\;\overrightarrow i  + \left( { - 12} \right).\;\overrightarrow j \end{array} \right.\) nên ta suy ra \(4.\;\overrightarrow u  = \overrightarrow a \)

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 1:03

Cách 1:

Gọi O là giao điểm của AC và BD.

 

Ta có:

\(\begin{array}{l}\overrightarrow {AG}  = \overrightarrow {AB}  + \overrightarrow {BG}  = \overrightarrow a  + \overrightarrow {BG} ;\\\overrightarrow {CG}  = \overrightarrow {CB}  + \overrightarrow {BG}  = \overrightarrow {DA}  + \overrightarrow {BG}  = - \overrightarrow b  + \overrightarrow {BG} ;\end{array}\)(*)

Lại có: \(\overrightarrow {BD} =\overrightarrow {BA}  + \overrightarrow {AD} =  - \overrightarrow a  + \overrightarrow b \).

\(\overrightarrow {BG} ,\overrightarrow {BD} \) cùng phương và \(\left| {\overrightarrow {BG} } \right| = \frac{2}{3}BO = \frac{1}{3}\left| {\overrightarrow {BD} } \right|\)

\( \Rightarrow \overrightarrow {BG}  = \frac{1}{3}\overrightarrow {BD}  = \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right)\)

Do đó (*) \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AG}  = \overrightarrow a  + \overrightarrow {BG}  = \overrightarrow a  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\\\overrightarrow {CG}  = -\overrightarrow b  + \overrightarrow {BG}  = -\overrightarrow b  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b ;\end{array} \right.\)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

Bình luận (0)
KT
24 tháng 9 2023 lúc 1:04

Cách 2:

Gọi AE, CF là các trung tuyến trong tam giác ABC.

Ta có: 

\(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AE}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\overrightarrow {AB}  + \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)} \right] \\= \frac{1}{3}\left( {2\overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {CG}  = \frac{2}{3}\overrightarrow {CF}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\left( {\overrightarrow {CB}  + \overrightarrow {CD} } \right) + \overrightarrow {CB} } \right] = \frac{1}{3}\left( {2\overrightarrow {CB}  + \overrightarrow {CD} } \right) = \frac{1}{3}\left( { - 2\overrightarrow {AD}  - \overrightarrow {AB} } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b \)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

Bình luận (0)
QL
Xem chi tiết
HM
1 tháng 10 2023 lúc 21:05

a) Ta có:

\(\overrightarrow {DM}  = \overrightarrow {DA}  + \overrightarrow {AM}  =  - \overrightarrow {AD}  + \frac{1}{2}\overrightarrow {AB} \) (do M là trung điểm của AB)

\(\overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {BN}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \) (do N là trung điểm của BC)

b)

\(\begin{array}{l}\overrightarrow {DM} .\overrightarrow {AN}  = \left( { - \overrightarrow {AD}  + \frac{1}{2}\overrightarrow {AB} } \right).\left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right)\\ =  - \overrightarrow {AD} .\overrightarrow {AB}  - \frac{1}{2}{\overrightarrow {AD} ^2} + \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{1}{4}\overrightarrow {AB} .\overrightarrow {AD} \end{array}\)

Mà \(\overrightarrow {AB} .\overrightarrow {AD}  = \overrightarrow {AD} .\overrightarrow {AB}  = 0\) (do \(AB \bot AD\)), \({\overrightarrow {AB} ^2} = A{B^2} = {a^2};{\overrightarrow {AD} ^2} = A{D^2} = {a^2}\)

\( \Rightarrow \overrightarrow {DM} .\overrightarrow {AN}  =  - 0 - \frac{1}{2}{a^2} + \frac{1}{2}{a^2} + \frac{1}{4}.0 = 0\)

Vậy \(DM \bot AN\) hay góc giữa hai đường thẳng DM và AN bằng \({90^ \circ }\).

Bình luận (0)
HT
Xem chi tiết
NT
30 tháng 11 2022 lúc 9:00

\(\overrightarrow{AB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{b}-\overrightarrow{a}\)

\(\overrightarrow{GC}=0-\overrightarrow{GA}-\overrightarrow{GB}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\overrightarrow{BC}=\overrightarrow{BG}+\overrightarrow{GC}=-\overrightarrow{b}-\overrightarrow{a}-\overrightarrow{b}=-\overrightarrow{a}-2\overrightarrow{b}\)

\(\overrightarrow{CA}=\overrightarrow{CG}+\overrightarrow{GA}=\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{a}=2\overrightarrow{a}+\overrightarrow{b}\)

Bình luận (0)