Những câu hỏi liên quan
NT
Xem chi tiết
DH
8 tháng 8 2017 lúc 15:03

Dảnh àk =))

Bình luận (0)
H24
8 tháng 8 2017 lúc 15:36

Cứ đăng đi - úng hộ ^^

Bình luận (0)
TV
Xem chi tiết
TP
16 tháng 8 2019 lúc 17:55

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
H24
16 tháng 8 2019 lúc 18:30

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

Bình luận (0)
NN
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
NL
6 tháng 5 2021 lúc 17:18

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

Bình luận (0)
NL
6 tháng 5 2021 lúc 17:20

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H9
18 tháng 8 2023 lúc 18:05

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

Bình luận (0)
BC
Xem chi tiết
KK
24 tháng 10 2020 lúc 19:57

a) Bổ đề: \(x^3+y^3\ge xy\left(x+y\right)\forall x,y>0\)

\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{ab\left(a+b\right)}{ab}+\frac{bc\left(b+c\right)}{bc}+\frac{ca\left(c+a\right)}{ca}=2\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
BC
24 tháng 10 2020 lúc 20:02

Cảm ơn bạn nhiều nhé Nhật Pháp soi chiếu thế gian. Nếu có thể, mong bạn hãy giúp mình những phần còn lại ^^

Bình luận (0)
 Khách vãng lai đã xóa
KK
24 tháng 10 2020 lúc 20:07

c) Áp dụng bất đẳng thức AM-GM:

\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge3\sqrt[3]{\frac{a^3}{b}.\frac{a^3}{b}.b^2}=3a^2\);

\(\frac{b^3}{c}+\frac{b^3}{c}+c^2\ge3\sqrt[3]{\frac{b^3}{c}.\frac{b^3}{c}.c^2}=3b^2\);

\(\frac{c^3}{a}+\frac{c^3}{a}+a^2\ge3\sqrt[3]{\frac{c^3}{a}.\frac{c^3}{a}.a^2}=3c^2\)

Cộng theo từng vế ba bất đẳng thức trên ta đươc:

 \(2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
LK
Xem chi tiết
TD
Xem chi tiết
H24
10 tháng 7 2017 lúc 8:03

\(\dfrac{1}{\left(a+b\right)^3}\left(\dfrac{1}{a^3}+\dfrac{1}{a^3}\right)+\dfrac{3}{\left(a+b\right)^4}+\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)+\dfrac{6}{\left(a+b\right)^5}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(=\dfrac{1}{\left(a+b\right)^3}\cdot\dfrac{b^3+a^3}{a^3b^3}+\dfrac{3}{\left(a+b\right)^4}\cdot\dfrac{b^2+a^2}{a^2b^2}+\dfrac{6}{\left(a+b\right)^5}\cdot\dfrac{b+a}{ab}\)

\(=\dfrac{1}{\left(a+b\right)^3}\cdot\dfrac{\left(b+a\right)\left(a^2-ab+a^2\right)}{a^3b^3}+\dfrac{3\left(b^2+a^2\right)}{a^2b^2\cdot\left(a+b\right)^4}\cdot\dfrac{6}{\left(a+b\right)^4}\cdot\dfrac{1}{ab}\)

\(=\dfrac{1}{\left(a+b\right)^2}\cdot\dfrac{b^2-ab+a^2}{a^3b^3}+\dfrac{3b^2+3a^2}{a^2b^2\cdot\left(a+b\right)^4}+\dfrac{6}{ab\left(a+b\right)^4}\)

\(=\dfrac{b^2-ab+a^2}{a^3b^3\cdot\left(a+b\right)^2}+\dfrac{3b^2+3a^2}{a^2b^2\cdot\left(a+b\right)^4}+\dfrac{6}{ab\cdot\left(a+b\right)^4}\)

\(=\dfrac{\left(a+b\right)^2\cdot\left(b^2-ab+a^2\right)+ab\left(3b^2+3a^2\right)+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)

\(=\dfrac{\left(a^2+2ab+b^2\right)\left(b^2-ab+a^2\right)+3ab^3+3a^3b+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)

\(=\dfrac{a^2b^2-a^3b+a^4+2ab^3-2a^2b^2+2a^3b+b^4-ab^3+a^2b^2+3ab^3+3a^2b+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)

\(=\dfrac{6a^2b^2+4a^3b+a^4+4ab^3+b^4}{a^3b^3\cdot\left(a+b\right)^4}\)

Bình luận (0)