Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
ST
Xem chi tiết
VT
Xem chi tiết
NM
8 tháng 7 2020 lúc 11:07

\(\overline{abc}-\overline{cba}=100.a+10.b+c-100.c-10.b-a=99.a-99.c=\)

\(=99\left(a-c\right)=495\Rightarrow a-c=5\)

=> a.c xảy ra các trường hợp sau 6.1=6; 7.2=14; 8.3=24; 9.4=36

Ta có \(b^2=a.c\) nên a.c phải là 1 số chính phương => a=9 và b=4

\(\overline{abc}=\left\{904;914;...;994\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
LK
1 tháng 7 2019 lúc 15:42

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

Bình luận (0)
TN
1 tháng 7 2019 lúc 15:46

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .

Bình luận (0)
LK
1 tháng 7 2019 lúc 16:29

Đặt: \(\hept{\begin{cases}\overline{abc}=x\\\overline{def}=y\end{cases}}\)

Có: \(\overline{xy}-\overline{yx}=10\left(x-y\right)-\left(x-y\right)=9\left(x-y\right)\)

Vì \(9\left(x-y\right)⋮2010\)

nên: \(\left(x-y\right)⋮670\)

Tức: \(\left(\overline{abc}-\overline{def}\right)⋮670\)

Do đó: \(\overline{abc}-\overline{def}\in BCNN\left(670\right)=\left\{670;1340;...\right\}\)

Vì x,y là số có 3 chữ số nên có: \(\overline{abc}-\overline{def}=670\)

Tức có: \(\overline{abc}>771\&x>y\)

Có: \(100\left(a-d\right)+10\left(b-e\right)-600-70=0\)

\(\Leftrightarrow100\left(a-d-6\right)+10\left(b-e-7\right)=0\)

\(\hept{\begin{cases}a-d=6\\b-e=7\\c=f\end{cases}\left(a>6;b\ge7\right)}\)

Giả sử: a=9 thì d=3 thì tổng a và d lớn nhất nên chọn

Từ đó: b=8 và e=1 thì tổng b và e lớn nhất

Suy ra: c=f=7

Vì thế: \(\hept{\begin{cases}abc=987\\def=317\end{cases}\Rightarrow}abc+def=1304\)

Max là 1304

Làm bừa xem có đúng k nhỉ

Bình luận (0)
HH
Xem chi tiết
RR
17 tháng 5 2018 lúc 22:04

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

Bình luận (0)
TV
18 tháng 5 2018 lúc 19:16

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

Bình luận (0)
P2
Xem chi tiết
LT
11 tháng 9 2019 lúc 19:47

Có cái gợi ý thì dễ rồi

\(\overline{1b5,a2c}=1,001\times\overline{abc}=\overline{abc,abc}\)

\(\overline{1b5,a2c}=\overline{abc,abc}\)

a=1,c=5,b=2

Đáp số:số abc cần tìm là 125
 

Bình luận (0)
NL
Xem chi tiết
NL
15 tháng 9 2017 lúc 5:59

giúp tớ với nhé!

Bình luận (0)
HL
8 tháng 2 2021 lúc 14:47

Bài 5:

Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825

=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683

=> abc chia 1987 dư 304. Mà abc nhỏ nhất

=> abc = 304
Vậy số tự nhiên là 11111304

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NT
28 tháng 3 2023 lúc 21:04

Theo đề, ta có: 100a+10b+c=11(a+b+c)

=>89a-b-10c=0

Do 10c+b<100 nên 89a<100 

=>a<=1

=>a=1

=>89a=10z+y

=>z=8; y=9

=>198

Bình luận (0)
H24
Xem chi tiết
HK
Xem chi tiết